Spaces:
Runtime error
Runtime error
🐛 update defaults
Browse filesSigned-off-by: peter szemraj <[email protected]>
- app.py +23 -16
- converse.py +8 -2
app.py
CHANGED
@@ -44,11 +44,15 @@ import transformers
|
|
44 |
|
45 |
transformers.logging.set_verbosity_error()
|
46 |
cwd = Path.cwd()
|
47 |
-
|
48 |
|
49 |
|
50 |
def chat(
|
51 |
-
prompt_message,
|
|
|
|
|
|
|
|
|
52 |
) -> str:
|
53 |
"""
|
54 |
chat - the main function for the chatbot. This is the function that is called when the user
|
@@ -84,7 +88,7 @@ def ask_gpt(
|
|
84 |
chat_pipe,
|
85 |
speaker="person alpha",
|
86 |
responder="person beta",
|
87 |
-
min_length=
|
88 |
max_length=48,
|
89 |
top_p=0.95,
|
90 |
top_k=25,
|
@@ -99,7 +103,7 @@ def ask_gpt(
|
|
99 |
:param chat_pipe: the pipeline object for the model, created by the pipeline() function
|
100 |
:param str speaker: the name of the speaker, defaults to "person alpha"
|
101 |
:param str responder: the name of the responder, defaults to "person beta"
|
102 |
-
:param int min_length: the minimum length of the response, defaults to
|
103 |
:param int max_length: the maximum length of the response, defaults to 64
|
104 |
:param float top_p: the top_p value for the model, defaults to 0.95
|
105 |
:param int top_k: the top_k value for the model, defaults to 25
|
@@ -128,22 +132,20 @@ def ask_gpt(
|
|
128 |
temperature=temperature,
|
129 |
max_length=max_length,
|
130 |
min_length=min_length,
|
131 |
-
constrained_beam_search
|
132 |
)
|
133 |
gpt_et = time.perf_counter()
|
134 |
gpt_rt = round(gpt_et - st, 2)
|
135 |
rawtxt = resp["out_text"]
|
136 |
# check for proper nouns
|
137 |
if basic_sc:
|
138 |
-
cln_resp = symspeller(rawtxt, sym_checker=
|
139 |
else:
|
140 |
cln_resp = synthesize_grammar(corrector=grammarbot, message=rawtxt)
|
141 |
bot_resp_a = corr(remove_repeated_words(cln_resp))
|
142 |
bot_resp = fix_punct_spacing(bot_resp_a)
|
143 |
corr_rt = round(time.perf_counter() - gpt_et, 4)
|
144 |
-
print(
|
145 |
-
f"{gpt_rt + corr_rt} to respond, {gpt_rt} GPT, {corr_rt} for correction\n"
|
146 |
-
)
|
147 |
return remove_trailing_punctuation(bot_resp)
|
148 |
|
149 |
|
@@ -163,6 +165,7 @@ def get_parser():
|
|
163 |
help="the model to use for the chatbot on https://huggingface.co/models OR a path to a local model",
|
164 |
)
|
165 |
parser.add_argument(
|
|
|
166 |
"--gram-model",
|
167 |
required=False,
|
168 |
type=str,
|
@@ -173,9 +176,9 @@ def get_parser():
|
|
173 |
parser.add_argument(
|
174 |
"--basic-sc",
|
175 |
required=False,
|
176 |
-
default=False,
|
177 |
action="store_true",
|
178 |
-
help="
|
179 |
)
|
180 |
|
181 |
parser.add_argument(
|
@@ -188,7 +191,7 @@ def get_parser():
|
|
188 |
"--test",
|
189 |
action="store_true",
|
190 |
default=False,
|
191 |
-
help="load the smallest model for simple testing",
|
192 |
)
|
193 |
|
194 |
return parser
|
@@ -207,7 +210,7 @@ if __name__ == "__main__":
|
|
207 |
gram_model = str(args.gram_model)
|
208 |
device = 0 if torch.cuda.is_available() else -1
|
209 |
|
210 |
-
|
211 |
|
212 |
my_chatbot = (
|
213 |
pipeline("text-generation", model=model_loc.resolve(), device=device)
|
@@ -218,12 +221,12 @@ if __name__ == "__main__":
|
|
218 |
|
219 |
if basic_sc:
|
220 |
print("Using the baseline spellchecker")
|
221 |
-
|
222 |
else:
|
223 |
print("using neural spell checker")
|
224 |
grammarbot = pipeline("text2text-generation", gram_model, device=device)
|
225 |
|
226 |
-
|
227 |
iface = gr.Interface(
|
228 |
chat,
|
229 |
inputs=[
|
@@ -238,7 +241,11 @@ if __name__ == "__main__":
|
|
238 |
),
|
239 |
Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.95, label="top_p"),
|
240 |
Slider(minimum=0, maximum=100, step=5, default=20, label="top_k"),
|
241 |
-
Radio(
|
|
|
|
|
|
|
|
|
242 |
],
|
243 |
outputs="html",
|
244 |
examples_per_page=8,
|
|
|
44 |
|
45 |
transformers.logging.set_verbosity_error()
|
46 |
cwd = Path.cwd()
|
47 |
+
_cwd_str = str(cwd.resolve()) # string so it can be passed to os.path() objects
|
48 |
|
49 |
|
50 |
def chat(
|
51 |
+
prompt_message,
|
52 |
+
temperature: float = 0.5,
|
53 |
+
top_p: float = 0.95,
|
54 |
+
top_k: int = 20,
|
55 |
+
constrained_generation: str = "False",
|
56 |
) -> str:
|
57 |
"""
|
58 |
chat - the main function for the chatbot. This is the function that is called when the user
|
|
|
88 |
chat_pipe,
|
89 |
speaker="person alpha",
|
90 |
responder="person beta",
|
91 |
+
min_length=12,
|
92 |
max_length=48,
|
93 |
top_p=0.95,
|
94 |
top_k=25,
|
|
|
103 |
:param chat_pipe: the pipeline object for the model, created by the pipeline() function
|
104 |
:param str speaker: the name of the speaker, defaults to "person alpha"
|
105 |
:param str responder: the name of the responder, defaults to "person beta"
|
106 |
+
:param int min_length: the minimum length of the response, defaults to 12
|
107 |
:param int max_length: the maximum length of the response, defaults to 64
|
108 |
:param float top_p: the top_p value for the model, defaults to 0.95
|
109 |
:param int top_k: the top_k value for the model, defaults to 25
|
|
|
132 |
temperature=temperature,
|
133 |
max_length=max_length,
|
134 |
min_length=min_length,
|
135 |
+
constrained_beam_search=constrained_generation,
|
136 |
)
|
137 |
gpt_et = time.perf_counter()
|
138 |
gpt_rt = round(gpt_et - st, 2)
|
139 |
rawtxt = resp["out_text"]
|
140 |
# check for proper nouns
|
141 |
if basic_sc:
|
142 |
+
cln_resp = symspeller(rawtxt, sym_checker=basic_spell)
|
143 |
else:
|
144 |
cln_resp = synthesize_grammar(corrector=grammarbot, message=rawtxt)
|
145 |
bot_resp_a = corr(remove_repeated_words(cln_resp))
|
146 |
bot_resp = fix_punct_spacing(bot_resp_a)
|
147 |
corr_rt = round(time.perf_counter() - gpt_et, 4)
|
148 |
+
print(f"{gpt_rt + corr_rt} to respond, {gpt_rt} GPT, {corr_rt} for correction\n")
|
|
|
|
|
149 |
return remove_trailing_punctuation(bot_resp)
|
150 |
|
151 |
|
|
|
165 |
help="the model to use for the chatbot on https://huggingface.co/models OR a path to a local model",
|
166 |
)
|
167 |
parser.add_argument(
|
168 |
+
"-gm",
|
169 |
"--gram-model",
|
170 |
required=False,
|
171 |
type=str,
|
|
|
176 |
parser.add_argument(
|
177 |
"--basic-sc",
|
178 |
required=False,
|
179 |
+
default=False,
|
180 |
action="store_true",
|
181 |
+
help="use symspell (statistical spelling correction) instead of neural spell correction",
|
182 |
)
|
183 |
|
184 |
parser.add_argument(
|
|
|
191 |
"--test",
|
192 |
action="store_true",
|
193 |
default=False,
|
194 |
+
help="load the smallest model for simple testing (ethzanalytics/distilgpt2-tiny-conversational)",
|
195 |
)
|
196 |
|
197 |
return parser
|
|
|
210 |
gram_model = str(args.gram_model)
|
211 |
device = 0 if torch.cuda.is_available() else -1
|
212 |
|
213 |
+
logging.info(f"CUDA avail is {torch.cuda.is_available()}")
|
214 |
|
215 |
my_chatbot = (
|
216 |
pipeline("text-generation", model=model_loc.resolve(), device=device)
|
|
|
221 |
|
222 |
if basic_sc:
|
223 |
print("Using the baseline spellchecker")
|
224 |
+
basic_spell = build_symspell_obj()
|
225 |
else:
|
226 |
print("using neural spell checker")
|
227 |
grammarbot = pipeline("text2text-generation", gram_model, device=device)
|
228 |
|
229 |
+
logging.info(f"using model stored here: \n {model_loc} \n")
|
230 |
iface = gr.Interface(
|
231 |
chat,
|
232 |
inputs=[
|
|
|
241 |
),
|
242 |
Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.95, label="top_p"),
|
243 |
Slider(minimum=0, maximum=100, step=5, default=20, label="top_k"),
|
244 |
+
Radio(
|
245 |
+
choices=["True", "False"],
|
246 |
+
default="False",
|
247 |
+
label="constrained_generation",
|
248 |
+
),
|
249 |
],
|
250 |
outputs="html",
|
251 |
examples_per_page=8,
|
converse.py
CHANGED
@@ -23,7 +23,7 @@ def discussion(
|
|
23 |
responder: str,
|
24 |
pipeline,
|
25 |
timeout=45,
|
26 |
-
min_length=
|
27 |
max_length=64,
|
28 |
top_p=0.95,
|
29 |
top_k=50,
|
@@ -60,6 +60,8 @@ def discussion(
|
|
60 |
str, the generated text
|
61 |
"""
|
62 |
|
|
|
|
|
63 |
p_list = [] # track conversation
|
64 |
p_list.append(speaker.lower() + ":" + "\n")
|
65 |
p_list.append(prompt_text.lower() + "\n")
|
@@ -75,6 +77,8 @@ def discussion(
|
|
75 |
response = constrained_generation(
|
76 |
prompt=this_prompt,
|
77 |
pipeline=pipeline,
|
|
|
|
|
78 |
no_repeat_ngram_size=no_repeat_ngram_size,
|
79 |
length_penalty=length_penalty,
|
80 |
repetition_penalty=1.0,
|
@@ -101,6 +105,7 @@ def discussion(
|
|
101 |
speaker,
|
102 |
responder,
|
103 |
timeout=timeout,
|
|
|
104 |
max_length=max_length,
|
105 |
top_p=top_p,
|
106 |
top_k=top_k,
|
@@ -112,6 +117,7 @@ def discussion(
|
|
112 |
device=device,
|
113 |
verbose=verbose,
|
114 |
)
|
|
|
115 |
if isinstance(bot_dialogue, list) and len(bot_dialogue) > 1:
|
116 |
bot_resp = ", ".join(bot_dialogue)
|
117 |
elif isinstance(bot_dialogue, list) and len(bot_dialogue) == 1:
|
@@ -123,12 +129,12 @@ def discussion(
|
|
123 |
# remove the last ',' '.' chars
|
124 |
bot_resp = remove_trailing_punctuation(bot_resp)
|
125 |
if verbose:
|
|
|
126 |
print("\n... bot response:\n")
|
127 |
pp.pprint(bot_resp)
|
128 |
p_list.append(bot_resp + "\n")
|
129 |
p_list.append("\n")
|
130 |
|
131 |
-
print("\nfinished!")
|
132 |
logging.info(f"finished generating response:\n\t{bot_resp}")
|
133 |
# return the bot response and the full conversation
|
134 |
|
|
|
23 |
responder: str,
|
24 |
pipeline,
|
25 |
timeout=45,
|
26 |
+
min_length=8,
|
27 |
max_length=64,
|
28 |
top_p=0.95,
|
29 |
top_k=50,
|
|
|
60 |
str, the generated text
|
61 |
"""
|
62 |
|
63 |
+
logging.debug(f"input args: {locals()}")
|
64 |
+
|
65 |
p_list = [] # track conversation
|
66 |
p_list.append(speaker.lower() + ":" + "\n")
|
67 |
p_list.append(prompt_text.lower() + "\n")
|
|
|
77 |
response = constrained_generation(
|
78 |
prompt=this_prompt,
|
79 |
pipeline=pipeline,
|
80 |
+
min_generated_tokens=min_length,
|
81 |
+
max_generated_tokens=max_length,
|
82 |
no_repeat_ngram_size=no_repeat_ngram_size,
|
83 |
length_penalty=length_penalty,
|
84 |
repetition_penalty=1.0,
|
|
|
105 |
speaker,
|
106 |
responder,
|
107 |
timeout=timeout,
|
108 |
+
min_length=min_length,
|
109 |
max_length=max_length,
|
110 |
top_p=top_p,
|
111 |
top_k=top_k,
|
|
|
117 |
device=device,
|
118 |
verbose=verbose,
|
119 |
)
|
120 |
+
logging.debug(f"generation done. bot_dialogue: {bot_dialogue}")
|
121 |
if isinstance(bot_dialogue, list) and len(bot_dialogue) > 1:
|
122 |
bot_resp = ", ".join(bot_dialogue)
|
123 |
elif isinstance(bot_dialogue, list) and len(bot_dialogue) == 1:
|
|
|
129 |
# remove the last ',' '.' chars
|
130 |
bot_resp = remove_trailing_punctuation(bot_resp)
|
131 |
if verbose:
|
132 |
+
print("\nfinished!")
|
133 |
print("\n... bot response:\n")
|
134 |
pp.pprint(bot_resp)
|
135 |
p_list.append(bot_resp + "\n")
|
136 |
p_list.append("\n")
|
137 |
|
|
|
138 |
logging.info(f"finished generating response:\n\t{bot_resp}")
|
139 |
# return the bot response and the full conversation
|
140 |
|