Spaces:
Runtime error
Runtime error
File size: 8,248 Bytes
203509f a738f02 b4c0306 203509f a738f02 203509f b4c0306 203509f b4c0306 203509f a738f02 203509f a738f02 203509f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
"""
constrained_generation.py - use constrained beam search to generate text from a model with entered constraints
"""
import copy
import logging
logging.basicConfig(level=logging.INFO)
import time
from pathlib import Path
import yake
from transformers import AutoTokenizer, PhrasalConstraint
def get_tokenizer(model_name="gpt2", verbose=False):
"""
get_tokenizer - returns a tokenizer object
:param model_name: name of the model to use, default gpt2
:param verbose: verbosity
"""
tokenizer = AutoTokenizer.from_pretrained(
model_name, add_special_tokens=False, padding=True, truncation=True
)
tokenizer.pad_token = tokenizer.eos_token
if verbose:
print(f"loaded tokenizer {model_name}")
return tokenizer
def unique_words(list_of_strings):
"""
unique_words - return a list of unique words from a list of strings. Uses set to remove duplicates.
"""
unique_words = []
output_list = []
for string in list_of_strings:
# split string into words
words = string.split()
# check if word is unique
unique_status = True
for word in words:
if word not in unique_words:
unique_words.append(word)
else:
unique_status = False
break
if unique_status:
output_list.append(string)
return output_list
def create_kw_extractor(
language="en",
max_ngram_size=3,
deduplication_algo="seqm",
windowSize=10,
numOfKeywords=10,
ddpt=0.7,
):
"""
creates a keyword extractor object
:param language: language of the text
:param max_ngram_size: max ngram size
:param deduplication_algo: deduplication algorithm
:param windowSize: window size
:param numOfKeywords: number of keywords
:param ddpt: Deduplication Percentage Threshold
:return: keyword extractor object
"""
assert ddpt >= 0 and ddpt <= 1, f"need 0<thresh<1, got {ddpt}"
return yake.KeywordExtractor(
lan=language,
n=max_ngram_size,
dedupLim=ddpt,
dedupFunc=deduplication_algo,
windowsSize=windowSize,
top=numOfKeywords,
features=None,
)
def simple_kw(body_text: str, yake_ex=None, max_kw=15, verbose=False):
"""
simple_kw - extract keywords from a text using yake
Args:
body_text (str): text to extract keywords from
yake_ex (yake.KeywordExtractor, optional): yake keyword extractor. Defaults to None.
max_kw (int, optional): maximum number of keywords to extract. Defaults to 10.
verbose (bool, optional): Defaults to False.
Returns:
list: list of keywords
"""
yake_ex = yake_ex or create_kw_extractor(
max_ngram_size=2,
ddpt=0.9,
windowSize=10,
deduplication_algo="seqm",
numOfKeywords=max_kw,
) # per optuna study
keywords = yake_ex.extract_keywords(body_text)
keywords_list = [str(kw[0]).lower() for kw in keywords]
logging.info(
f"YAKE: found {len(keywords_list)} keywords, the top {max_kw} are: {keywords_list[:max_kw]}"
)
if verbose:
print(f"found {len(keywords_list)} keywords, the top {max_kw} are:")
print(keywords_list[:max_kw])
logging.info(f"found {len(keywords_list)} keywords, the top {max_kw} are:")
return keywords_list[:max_kw]
def constrained_generation(
prompt: str,
pipeline,
tokenizer=None,
no_repeat_ngram_size=2,
length_penalty=0.7,
repetition_penalty=3.5,
num_beams=4,
max_generated_tokens=48,
min_generated_tokens=2,
timeout=300,
num_return_sequences=1,
verbose=False,
full_text=False,
force_word: str = None,
speaker_name: str = "Person Alpha",
responder_name: str = "Person Beta",
**kwargs,
):
"""
constrained_generation - generate text based on prompt and constraints
USAGE
-----
response = constrained_generation("hey man - how have you been lately?",
tokenizer, my_chatbot, verbose=True,
force_word=" meme", num_beams=32)
Parameters
----------
prompt : str, prompt to use for generation,
tokenizer : transformers.PreTrainedTokenizer, tokenizer to use, must be compatible with model
pipeline : transformers.pipeline, pipeline to use, must be compatible with tokenizer & text2text model
no_repeat_ngram_size : int, optional, default=2,
num_beams : int, optional, default=8,
max_generated_tokens : int, optional, default=64,
min_generated_tokens : int, optional, default=16,
verbose : bool, optional, default=False, print output
force_word : _type_, optional, default=None, force word to be used in generation
speaker_name : str, optional, default="Person Alpha", name of speaker
responder_name : str, optional, default="Person Beta", name of responder
Returns
-------
response : str, generated text
"""
logging.debug(f" constraining generation with {locals()}")
st = time.perf_counter()
tokenizer = tokenizer or copy.deepcopy(pipeline.tokenizer)
tokenizer.add_prefix_space = True
tokenizer.add_special_tokens = False
prompt_length = len(tokenizer(prompt, truncation=True).input_ids)
if responder_name.lower() not in prompt.lower():
prompt = f"{prompt}\n\n{responder_name}:\n"
# key_prompt_phrases = get_keyberts(prompt)
key_prompt_phrases = simple_kw(prompt)
try:
responder_name_words = responder_name.lower().split()
speaker_name_words = speaker_name.lower().split()
except Exception as e:
responder_name_words = []
speaker_name_words = []
logging.info(f"could not split names: {e}")
key_prompt_phrases = [
p
for p in key_prompt_phrases
if not any([name in p for name in responder_name_words])
and not any([name in p for name in speaker_name_words])
]
force_flexible = unique_words(key_prompt_phrases)
print(f"found keywords: {force_flexible}")
if verbose:
logging.info(f"found the following keywords: {force_flexible}")
logging.info(
f"forcing the word: {force_word}"
) if force_word is not None else logging.info("\n")
else:
logging.info(f"found the following keywords: {force_flexible}")
if len(force_flexible) == 0:
force_flexible = None
constraints = (
[
PhrasalConstraint(
tokenizer(force_word, add_special_tokens=False).input_ids,
),
]
if force_word is not None
else None
)
force_words_ids = (
[
tokenizer(
force_flexible,
).input_ids,
]
if force_flexible is not None
else None
)
try:
logging.info("generating text..")
result = pipeline(
prompt,
constraints=constraints if force_word is not None else None,
force_words_ids=force_words_ids if force_flexible is not None else None,
max_length=None,
max_new_tokens=max_generated_tokens,
min_length=min_generated_tokens + prompt_length
if full_text
else min_generated_tokens,
num_beams=num_beams,
no_repeat_ngram_size=no_repeat_ngram_size,
num_return_sequences=num_return_sequences,
max_time=timeout,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
return_full_text=full_text,
clean_up_tokenization_spaces=True,
early_stopping=True,
do_sample=False,
**kwargs,
)
response = result[0]["generated_text"]
rt = round((time.perf_counter() - st) / 60, 3)
logging.info(f"generated response in {rt} minutes")
if verbose:
print(f"input prompt:\n\t{prompt}")
print(f"response:\n\t{response}")
except Exception as e:
logging.info(f"could not generate response: {e}")
response = "Sorry, I don't know how to respond to that."
return response
|