Spaces:
Sleeping
Sleeping
add app and requirements
Browse files- app.py +153 -0
- requirements.txt +1 -0
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import random
|
| 6 |
+
|
| 7 |
+
from skincancer_vit.model import SkinCancerViTModel
|
| 8 |
+
|
| 9 |
+
HF_MODEL_REPO = "ethicalabs/SkinCancerViT"
|
| 10 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
print(f"Loading SkinCancerViT model from {HF_MODEL_REPO} to {DEVICE}...")
|
| 14 |
+
|
| 15 |
+
model = SkinCancerViTModel.from_pretrained(HF_MODEL_REPO)
|
| 16 |
+
model.to(DEVICE)
|
| 17 |
+
model.eval() # Set to evaluation mode
|
| 18 |
+
print("Model loaded successfully.")
|
| 19 |
+
|
| 20 |
+
print("Loading 'marmal88/skin_cancer' dataset for random samples...")
|
| 21 |
+
dataset = load_dataset("marmal88/skin_cancer", split="test")
|
| 22 |
+
print("Dataset loaded successfully.")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def predict_uploaded_image(image: Image.Image, age: int, localization: str) -> str:
|
| 26 |
+
"""
|
| 27 |
+
Handles prediction for an uploaded image with user-provided tabular data.
|
| 28 |
+
"""
|
| 29 |
+
if model is None:
|
| 30 |
+
return "Error: Model not loaded. Please check the console for details."
|
| 31 |
+
if image is None:
|
| 32 |
+
return "Please upload an image."
|
| 33 |
+
if age is None:
|
| 34 |
+
return "Please enter an age."
|
| 35 |
+
if not localization:
|
| 36 |
+
return "Please select a localization."
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
# Call the model's full_predict method
|
| 40 |
+
predicted_dx, confidence = model.full_predict(
|
| 41 |
+
raw_image=image, raw_age=age, raw_localization=localization, device=DEVICE
|
| 42 |
+
)
|
| 43 |
+
return f"Predicted Diagnosis: **{predicted_dx}** (Confidence: {confidence:.4f})"
|
| 44 |
+
except Exception as e:
|
| 45 |
+
return f"Prediction Error: {e}"
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# --- Prediction Function for Random Sample ---
|
| 49 |
+
def predict_random_sample() -> str:
|
| 50 |
+
"""
|
| 51 |
+
Fetches a random sample from the dataset and performs prediction.
|
| 52 |
+
"""
|
| 53 |
+
if model is None:
|
| 54 |
+
return "Error: Model not loaded. Please check the console for details."
|
| 55 |
+
if dataset is None:
|
| 56 |
+
return "Error: Dataset not loaded. Cannot select random sample."
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
# Select a random sample from the dataset
|
| 60 |
+
random_idx = random.randint(0, len(dataset) - 1)
|
| 61 |
+
sample = dataset[random_idx]
|
| 62 |
+
|
| 63 |
+
sample_image = sample["image"]
|
| 64 |
+
sample_age = sample["age"]
|
| 65 |
+
sample_localization = sample["localization"]
|
| 66 |
+
sample_true_dx = sample["dx"]
|
| 67 |
+
|
| 68 |
+
# Call the model's full_predict method
|
| 69 |
+
predicted_dx, confidence = model.full_predict(
|
| 70 |
+
raw_image=sample_image,
|
| 71 |
+
raw_age=sample_age,
|
| 72 |
+
raw_localization=sample_localization,
|
| 73 |
+
device=DEVICE,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Return a formatted string with all information
|
| 77 |
+
result_str = (
|
| 78 |
+
f"**Random Sample Details:**\n"
|
| 79 |
+
f"- Age: {sample_age}\n"
|
| 80 |
+
f"- Localization: {sample_localization}\n"
|
| 81 |
+
f"- True Diagnosis: **{sample_true_dx}**\n\n"
|
| 82 |
+
f"**Model Prediction:**\n"
|
| 83 |
+
f"- Predicted Diagnosis: **{predicted_dx}**\n"
|
| 84 |
+
f"- Confidence: {confidence:.4f}\n"
|
| 85 |
+
f"- Correct Prediction: {'✅ Yes' if predicted_dx == sample_true_dx else '❌ No'}"
|
| 86 |
+
)
|
| 87 |
+
return sample_image, result_str
|
| 88 |
+
except Exception as e:
|
| 89 |
+
return None, f"Prediction Error on Random Sample: {e}"
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# --- Gradio Interface ---
|
| 93 |
+
with gr.Blocks(title="Skin Cancer ViT Predictor") as demo:
|
| 94 |
+
gr.Markdown(
|
| 95 |
+
"""
|
| 96 |
+
# Skin Cancer ViT Predictor
|
| 97 |
+
This application demonstrates the `SkinCancerViT` multimodal model for skin cancer diagnosis.
|
| 98 |
+
It can take an uploaded image with patient metadata or predict on a random sample from the dataset.
|
| 99 |
+
**Disclaimer:** This tool is for demonstration and research purposes only and should not be used for medical diagnosis.
|
| 100 |
+
"""
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
with gr.Tab("Predict on Random Sample"):
|
| 104 |
+
gr.Markdown("## Get a Prediction from a Random Sample in the Test Set")
|
| 105 |
+
random_sample_button = gr.Button("Get Random Sample Prediction")
|
| 106 |
+
|
| 107 |
+
# Modified output components for random sample tab
|
| 108 |
+
with gr.Row():
|
| 109 |
+
output_random_image = gr.Image(
|
| 110 |
+
type="pil", label="Random Sample Image", height=250, width=250
|
| 111 |
+
)
|
| 112 |
+
output_random_details = gr.Markdown(
|
| 113 |
+
"Random sample details and prediction will appear here."
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
random_sample_button.click(
|
| 117 |
+
fn=predict_random_sample,
|
| 118 |
+
inputs=[],
|
| 119 |
+
outputs=[
|
| 120 |
+
output_random_image,
|
| 121 |
+
output_random_details,
|
| 122 |
+
], # Map to both image and markdown outputs
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
with gr.Tab("Upload Image & Predict"):
|
| 126 |
+
gr.Markdown("## Upload Your Image and Provide Patient Data")
|
| 127 |
+
with gr.Row():
|
| 128 |
+
image_input = gr.Image(
|
| 129 |
+
type="pil", label="Upload Skin Lesion Image (224x224 preferred)"
|
| 130 |
+
)
|
| 131 |
+
with gr.Column():
|
| 132 |
+
age_input = gr.Number(
|
| 133 |
+
label="Patient Age", minimum=0, maximum=120, step=1
|
| 134 |
+
)
|
| 135 |
+
# Ensure these localizations match your training data categories
|
| 136 |
+
localization_input = gr.Dropdown(
|
| 137 |
+
model.config.localization_to_id.keys(),
|
| 138 |
+
label="Lesion Localization",
|
| 139 |
+
value="unknown", # Default value
|
| 140 |
+
)
|
| 141 |
+
predict_button = gr.Button("Get Prediction")
|
| 142 |
+
|
| 143 |
+
output_upload = gr.Markdown("Prediction will appear here.")
|
| 144 |
+
|
| 145 |
+
predict_button.click(
|
| 146 |
+
fn=predict_uploaded_image,
|
| 147 |
+
inputs=[image_input, age_input, localization_input],
|
| 148 |
+
outputs=output_upload,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
if __name__ == "__main__":
|
| 152 |
+
demo.launch(share=False)
|
| 153 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
skincancervit @ git+https://github.com/ethicalabs-ai/SkinCancerViT.git
|