# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.

import json
import os
import sys
import time
from pathlib import Path
from typing import List, Literal, Optional, Tuple, TypedDict

import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
    get_model_parallel_rank,
    initialize_model_parallel,
    model_parallel_is_initialized,
)

from superposed.llama.model import ModelArgs, Transformer
from superposed.llama.tokenizer import Tokenizer
from superposed.llama.utils import *

Role = Literal["system", "user", "assistant"]


class Message(TypedDict):
    role: Role
    content: str


class CompletionPrediction(TypedDict, total=False):
    generation: str
    tokens: List[str]  # not required
    logprobs: List[float]  # not required


class ChatPrediction(TypedDict, total=False):
    generation: Message
    tokens: List[str]  # not required
    logprobs: List[float]  # not required


Dialog = List[Message]

B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"]
UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt."


class Llama:
    @staticmethod
    def build(
        ckpt_dir: str,
        tokenizer_path: str,
        max_seq_len: int,
        max_batch_size: int,
        device: None,
        model_parallel_size: Optional[int] = None,
        seed: int = 1,
    ) -> "Llama":
        """
        Build a Llama instance by initializing and loading a pre-trained model.

        Args:
            ckpt_dir (str): Path to the directory containing checkpoint files.
            tokenizer_path (str): Path to the tokenizer file.
            max_seq_len (int): Maximum sequence length for input text.
            max_batch_size (int): Maximum batch size for inference.
            mixed (bool): Whether to mix embeddings or not
            model_parallel_size (Optional[int], optional): Number of model parallel processes.
                If not provided, it's determined from the environment. Defaults to None.

        Returns:
            Llama: An instance of the Llama class with the loaded model and tokenizer.

        Raises:
            AssertionError: If there are no checkpoint files in the specified directory,
                or if the model parallel size does not match the number of checkpoint files.

        Note:
            This method initializes the distributed process group, sets the device to CUDA,
            and loads the pre-trained model and tokenizer.

        """
        if not torch.distributed.is_initialized():
            torch.distributed.init_process_group("nccl")
        if not model_parallel_is_initialized():
            if model_parallel_size is None:
                model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
            initialize_model_parallel(model_parallel_size)

        local_rank = int(os.environ.get("LOCAL_RANK", 0))
        print(local_rank)
        # torch.cuda.set_device(local_rank)
        if device == None:
            torch.cuda.set_device(local_rank)
            device = f"cuda:{local_rank}"
        # seed must be the same in all processes
        torch.manual_seed(seed)

        if local_rank > 0:
            sys.stdout = open(os.devnull, "w")

        start_time = time.time()
        checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
        assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
        assert model_parallel_size == len(
            checkpoints
        ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
        ckpt_path = checkpoints[get_model_parallel_rank()]
        checkpoint = torch.load(ckpt_path, map_location="cpu")
        with open(Path(ckpt_dir) / "params.json", "r") as f:
            params = json.loads(f.read())

        model_args: ModelArgs = ModelArgs(
            max_seq_len=max_seq_len,
            max_batch_size=max_batch_size,
            **params,
        )
        tokenizer = Tokenizer(model_path=tokenizer_path)
        model_args.vocab_size = tokenizer.n_words
        torch.set_default_tensor_type(torch.cuda.HalfTensor)
        model = Transformer(model_args)
        model.load_state_dict(checkpoint, strict=False)
        print(f"Loaded in {time.time() - start_time:.2f} seconds")
        return Llama(model, tokenizer, device)

    def __init__(self, model: Transformer, tokenizer: Tokenizer, device):
        self.model = model.to(device).eval()
        self.tokenizer = tokenizer
        self.device = device

    @torch.inference_mode()
    def generate(
        self,
        prompt_tokens: List[List[int]],
        max_gen_len: int,
        temperature: float = 0.6,
        top_p: float = 0.9,
        logprobs: bool = True,
        grade: bool = False
    ) -> Tuple[List[List[int]], Optional[List[List[float]]]]:
        """
        Generate text sequences based on provided prompts using the language generation model.

        Args:
            prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
            max_gen_len (int): Maximum length of the generated text sequence.
            temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
            top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
            logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
            echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.

        Returns:
            Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities.

        Note:
            This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness.
            If logprobs is True, token log probabilities are computed for each generated token.

        """
        params = self.model.params
        bsz = len(prompt_tokens)
        assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)

        min_prompt_len = min(len(t) for t in prompt_tokens)
        max_prompt_len = max(len(t) for t in prompt_tokens)
        # assert min_prompt_len == max_prompt_len
        prompt_len = min_prompt_len
        assert max_prompt_len <= params.max_seq_len
        total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)

        pad_id = self.tokenizer.pad_id
        tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device=self.device)
        for k, t in enumerate(prompt_tokens):
            tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device=self.device)
        if logprobs:
            token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
        prev_pos = 0
        eos_reached = torch.tensor([False] * bsz, device=self.device)
        input_text_mask = tokens != pad_id
        if grade:
            pad_mask = tokens == pad_id
            tokens = torch.where(tokens == pad_id, 0, tokens)
            logits = self.model.forward(tokens, prev_pos, False)
            tokens[pad_mask] = pad_id
            token_logprobs = -F.cross_entropy(
                input=logits[:, :-1, :].transpose(1, 2),
                target=tokens[:, 1:],
                reduction="none",
                ignore_index=pad_id,
            )
            #if pad_id in tokens:
            #    print(pad_id)
            #    print(tokens)
            #    print(token_logprobs)
            return token_logprobs

        for cur_pos in range(min_prompt_len, total_len):
            logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos, False)
            if temperature > 0:
                probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
                next_token = sample_top_p(probs, top_p)
            else:
                next_token = torch.argmax(logits[:, -1], dim=-1)

            next_token = next_token.reshape(-1)
            # only replace token if prompt has already been generated
            next_token = torch.where(
                input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
            )
            tokens[:, cur_pos] = next_token
            if logprobs:
                token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
                    input=logits.transpose(1, 2),
                    target=tokens[:, prev_pos + 1 : cur_pos + 1],
                    reduction="none",
                    ignore_index=pad_id,
                )                
            eos_reached |= (~input_text_mask[:, cur_pos]) & (
                next_token == self.tokenizer.eos_id
            )
            prev_pos = cur_pos
            if all(eos_reached):
                break

        # seq_len = torch.sum(tokens != pad_id, dim=1)
        # return tokens, torch.exp(-1 * torch.sum(logprobs, dim=1) / (seq_len - prompt_len)), torch.exp(-1 * torch.sum(custom_logprobs, dim=1) / )
        if logprobs:
            token_logprobs = token_logprobs.tolist()

        out_ppl = []
        for i, toks in enumerate(tokens.tolist()):
            if logprobs:
                probs = token_logprobs[i][prompt_len : len(prompt_tokens[i]) + max_gen_len]
            # cut to eos tok if any
            if self.tokenizer.eos_id in toks:
                eos_idx = toks.index(self.tokenizer.eos_id)
                probs = probs[:eos_idx] if logprobs else None
            out_ppl.append(torch.exp(-1 * torch.sum(torch.tensor(probs)) / len(probs)))
        return tokens, torch.tensor(out_ppl) if logprobs else None

def sample_top_p(probs, p, s=1):
    """
    Perform top-p (nucleus) sampling on a probability distribution.

    Args:
        probs (torch.Tensor): Probability distribution tensor.
        p (float): Probability threshold for top-p sampling.

    Returns:
        torch.Tensor: Sampled token indices.

    Note:
        Top-p sampling selects the smallest set of tokens whose cumulative probability mass
        exceeds the threshold p. The distribution is renormalized based on the selected tokens.

    """
    probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
    probs_sum = torch.cumsum(probs_sort, dim=-1)
    mask = probs_sum - probs_sort > p
    probs_sort[mask] = 0.0
    probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
    next_token = torch.multinomial(probs_sort, num_samples=s)
    next_token = torch.gather(probs_idx, -1, next_token)
    return next_token