esun-choi's picture
Update seg2.py
b5283fc
import torch
from dino2.model import Segmentor
from PIL import Image
from torchvision import transforms
import numpy as np
import cv2
T2=transforms.ToPILImage()
weights="./weights/dinov2.pt"
device=torch.device("cpu")
model = Segmentor(device,1,backbone = 'dinov2_b',head="conv")
model.load_state_dict(torch.load(weights,map_location="cpu"))
model = model.to(device)
img_transform = transforms.Compose([
transforms.Resize((14*64,14*64)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# ์†ก์žฅ๋ถ€๋ถ„์„ crop ํ•˜๊ธฐ ์œ„ํ•œ ์ฝ”๋“œ
# dinov2 ๋ชจ๋ธ์„ segmentation ๋ชจ๋ธ๋กœ ํ™œ์šฉํ•˜์˜€๊ณ  ์ด๋ฅผ train ํ•˜์—ฌ์„œ pretrained weight๋ฅผ weight ํด๋”์— ์ €์žฅํ•˜๊ณ  ์•„๋ž˜์™€ ๊ฐ™์ด loadํ•ฉ๋‹ˆ๋‹ค.
def dino_seg(numpy_array):
img0=Image.fromarray(numpy_array)
original_size=img0.size
img=img_transform(img0)
a=img.unsqueeze(0)
b=model(a)
b=b.squeeze(0)
b=b*255.0
model_output=T2(b) #pil image
model_output=model_output.resize(original_size)
model_output=np.array(model_output)
model_output[model_output > 220] = 255.0
model_output[model_output <= 220] = 0.0
model_output2=model_output
model_output3=model_output
output = np.stack([model_output, model_output2, model_output3])
output=np.transpose(output,(1,2,0))
return output
# def find_connected_components(image):
# _, binary_image = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY)
# _, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_image, connectivity=4)
# largest_component_index = np.argmax(stats[1:, cv2.CC_STAT_AREA]) + 1
# x, y, w, h,_=stats[largest_component_index, cv2.CC_STAT_LEFT:cv2.CC_STAT_TOP+cv2.CC_STAT_HEIGHT+1]
# return x, y, w, h