Spaces:
Runtime error
Runtime error
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from deep_translator import GoogleTranslator | |
# Initialize the Hugging Face Inference Client with the specific model | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# Function to translate Arabic text to English | |
def translate_to_english(text): | |
return GoogleTranslator(source='arabic', target='english').translate(text) | |
# Function to translate English text to Arabic | |
def translate_to_arabic(text): | |
return GoogleTranslator(source='english', target='arabic').translate(text) | |
# Function to format the prompt with conversation history | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
# The main function to generate responses | |
def generate(prompt, history, temperature=0.1, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
# Translate the Arabic prompt to English | |
english_prompt = translate_to_english(prompt) | |
formatted_prompt = format_prompt(english_prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
# Translate the English response back to Arabic | |
arabic_output = translate_to_arabic(output) | |
# Update the history state | |
history.append((prompt, arabic_output)) | |
# Return the response and the updated state | |
return arabic_output, history | |
# Additional input widgets for controlling the generation parameters | |
additional_inputs = [ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
# Creating and launching the Gradio interface | |
iface = gr.Interface( | |
fn=generate, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter your prompt in Arabic"), | |
gr.State() # State input to maintain the conversation history | |
] + additional_inputs, | |
outputs=[ | |
gr.Textbox(placeholder="Generated response in Arabic"), | |
gr.State() # State output to maintain the conversation history | |
], | |
title="Try Arabic Misteral", | |
description="Interact with an advanced AI model in Arabic. Adjust the settings below to tailor the responses. Your prompts will be translated to English, processed by the AI, and the response will be translated back to Arabic." | |
) | |
# Launch the interface | |
iface.launch() | |