pydiff / app.py
erikbeltran's picture
Update app.py
ec37392 verified
import spaces
import gradio as gr
from transformers import PreTrainedTokenizerFast, AutoModelForCausalLM
import torch
from threading import Thread
from transformers import TextIteratorStreamer
import os
# Initialize model and tokenizer
MODEL_ID = "erikbeltran/pydiff"
GGUF_FILE = "unsloth.Q4_K_M.gguf"
try:
# Use PreTrainedTokenizerFast instead of LlamaTokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_ID)
# Ensure the tokenizer has the necessary special tokens
special_tokens = {
# 'pad_token': '[PAD]',
'eos_token': '<|eot_id|>'
# 'bos_token': '<s>',
# 3 'unk_token': '<unk>'
}
tokenizer.add_special_tokens(special_tokens)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, gguf_file=GGUF_FILE)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
except Exception as e:
print(f"Error initializing model or tokenizer: {str(e)}")
raise
def format_diff_response(response):
"""Format the response to look like a diff output"""
lines = response.split('\n')
formatted = []
for line in lines:
if line.startswith('+'):
formatted.append(f'<span style="color: green">{line}</span>')
elif line.startswith('-'):
formatted.append(f'<span style="color: red">{line}</span>')
else:
formatted.append(line)
return '<br>'.join(formatted)
def create_prompt(request, file_content, system_message):
# return f"""<system>{system_message}</system>
#<request>{request}</request>
#<file>{file_content}</file>"""
return f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 July 2024
{system_message}<|eot_id|><|start_header_id|>user<|end_header_id|>
<request>{request}</request>
<file>{file_content}</file><|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
@spaces.GPU
def respond(request, file_content, system_message, max_tokens, temperature, top_p):
try:
prompt = create_prompt(request, file_content, system_message)
# Tokenize input
inputs = tokenizer(
prompt,
return_tensors="pt",
add_special_tokens=True,
padding=True,
truncation=True,
max_length=2048
).to(device)
# Generate response with streaming
response = ""
streamer = TextIteratorStreamer(tokenizer,skip_prompt = True , skip_special_tokens=True)
generation_kwargs = dict(
input_ids=inputs["input_ids"],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield formatted responses as they're generated
for new_text in streamer:
response += new_text
yield format_diff_response(response)
except Exception as e:
yield f"<span style='color: red'>Error generating response: {str(e)}</span>"
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Code Review Assistant")
with gr.Row():
with gr.Column():
request_input = gr.Textbox(
label="Request",
value="fix the error",
placeholder="Enter your request (e.g., 'fix the function', 'add error handling')",
lines=3
)
file_input = gr.Code(
label="File Content",
value="""def suma(a, b):
return a + b
print(suma(5, "3"))
""",
language="python",
lines=10
)
with gr.Column():
output = gr.HTML(label="Diff Output")
with gr.Accordion("Advanced Settings", open=False):
system_msg = gr.Textbox(
value="you are a coder asistant, returns the answer to user in diff format",
label="System Message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=128,
step=1,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.5,
step=0.5,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=1,
step=0.05,
label="Top-p"
)
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=respond,
inputs=[
request_input,
file_input,
system_msg,
max_tokens,
temperature,
top_p
],
outputs=output
)
if __name__ == "__main__":
demo.launch()