Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
# Load the Image-to-Text (OCR) model
|
| 6 |
+
ocr_model = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 7 |
+
|
| 8 |
+
# Load the Text Generation model
|
| 9 |
+
story_model_name = "EleutherAI/gpt-neo-2.7B"
|
| 10 |
+
story_tokenizer = AutoTokenizer.from_pretrained(story_model_name)
|
| 11 |
+
story_model = AutoModelForCausalLM.from_pretrained(story_model_name)
|
| 12 |
+
|
| 13 |
+
# Function to extract text description from an image
|
| 14 |
+
def extract_description(image_path):
|
| 15 |
+
try:
|
| 16 |
+
# Use the OCR model to extract a caption/description from the image
|
| 17 |
+
result = ocr_model(Image.open(image_path))
|
| 18 |
+
return result[0]["generated_text"]
|
| 19 |
+
except Exception as e:
|
| 20 |
+
return f"Error extracting description: {e}"
|
| 21 |
+
|
| 22 |
+
# Function to generate a story based on the extracted description
|
| 23 |
+
def generate_story(description):
|
| 24 |
+
try:
|
| 25 |
+
# Format the input prompt for the story
|
| 26 |
+
prompt = f"Create a creative story based on this description: {description}"
|
| 27 |
+
|
| 28 |
+
# Use the story model to generate text
|
| 29 |
+
inputs = story_tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 30 |
+
outputs = story_model.generate(inputs["input_ids"], max_length=300, num_return_sequences=1, temperature=0.8)
|
| 31 |
+
story = story_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 32 |
+
return story
|
| 33 |
+
except Exception as e:
|
| 34 |
+
return f"Error generating story: {e}"
|
| 35 |
+
|
| 36 |
+
# Main function to process the image and generate a story
|
| 37 |
+
def create_story(image):
|
| 38 |
+
try:
|
| 39 |
+
# Step 1: Extract a description from the image
|
| 40 |
+
description = extract_description(image)
|
| 41 |
+
if not description or "Error" in description:
|
| 42 |
+
return description, None
|
| 43 |
+
|
| 44 |
+
# Step 2: Generate a story from the extracted description
|
| 45 |
+
story = generate_story(description)
|
| 46 |
+
|
| 47 |
+
# Combine the description and story for the output
|
| 48 |
+
output = f"📷 Extracted Description:\n{description}\n\n📖 Generated Story:\n{story}"
|
| 49 |
+
return output
|
| 50 |
+
except Exception as e:
|
| 51 |
+
return f"Error processing the image: {e}"
|
| 52 |
+
|
| 53 |
+
# Gradio interface
|
| 54 |
+
interface = gr.Interface(
|
| 55 |
+
fn=create_story,
|
| 56 |
+
inputs=gr.Image(label="Upload an Image (PNG, JPG, JPEG)"),
|
| 57 |
+
outputs=gr.Textbox(label="Generated Story"),
|
| 58 |
+
title="Text-Based Story Creator",
|
| 59 |
+
description=(
|
| 60 |
+
"Upload an image, and this app will generate a creative story based on the description of the image. "
|
| 61 |
+
"It uses advanced AI models for image-to-text conversion and story generation."
|
| 62 |
+
),
|
| 63 |
+
allow_flagging="never"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
interface.launch()
|