import numpy as np import pandas as pd import os import scipy.sparse as sp from fainress_component import disparate_impact_remover, reweighting, sample def nba_CatGCN_pre_process(df, df_edge_list, sens_attr, label, special_case, onehot_bin_columns, onehot_cat_columns, debaising_approach=None): if onehot_bin_columns != None: df = apply_bin_columns(df, onehot_bin_columns) if onehot_cat_columns != None: df = apply_cat_columns(df, onehot_cat_columns) #nba case if -1 in df[label].unique(): df[label] = df[label].replace(-1, 0) if debaising_approach != None: if debaising_approach == 'disparate_impact_remover': df = disparate_impact_remover(df, sens_attr, label) elif debaising_approach == 'reweighting': df = reweighting(df, sens_attr, label) elif debaising_approach == 'sample': df = sample(df, sens_attr, label) #if debaising_approach == 'sample': # df = df.reset_index() # df = df.drop(['index'], axis=1) # df = df.drop_duplicates() if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'reweighting': df.AGE = df.AGE.astype(int) df.country = df.country.astype(int) df.SALARY = df.SALARY.astype(int) df['user_id'] = pd.to_numeric(df['user_id']) df = df.astype({'user_id': int}) df.AGE = df.AGE.astype(str) df.MP = df.MP.astype(str) df.FG = df.FG.astype(str) df['AGE'] = df['AGE'].astype(str).astype(int) #for the nba dataset we choose age as the m apping option to the userid uid_age = df[['user_id', 'AGE']].copy() uid_age.dropna(inplace=True) uid_age2 = df[['user_id', 'AGE']].copy() #create uid2id uid2id = {num: i for i, num in enumerate(df['user_id'])} #create age2id age2id = {num: i for i, num in enumerate(pd.unique(uid_age['AGE']))} #create user_field user_field = col_map(uid_age, 'user_id', uid2id) user_field = col_map(user_field, 'AGE', age2id) ## new part for disparate remover if debaising_approach == 'disparate_impact_remover': user_field = user_field.reset_index() user_field = user_field.drop(['user_id'], axis=1) user_field = user_field.rename(columns={"index": "user_id"}) user_field['user_id'] = user_field['user_id'].astype(str).astype(int) #create user_label user_label = df[df['user_id'].isin(uid_age2['user_id'])] user_label = col_map(user_label, 'user_id', uid2id) user_label = label_map(user_label, user_label.columns[1:]) print('User label size', user_label.size) # save_path = "./input_ali_data" save_path = "./" # process edge list if df_edge_list['source'].dtype != 'int64': df_edge_list['source'] = df_edge_list['source'].astype(str).astype(np.int64) df_edge_list['target'] = df_edge_list['target'].astype(str).astype(np.int64) source = [] target = [] for i in range(df_edge_list.shape[0]): if any(df.user_id == df_edge_list.source[i]) == True and any(df.user_id == df_edge_list.target[i]) == True: index = df.user_id[df.user_id == df_edge_list.source[i]].index.tolist()[0] source.append(index) index2 = df.user_id[df.user_id == df_edge_list.target[i]].index.tolist()[0] target.append(index2) user_edge_new = pd.DataFrame({'uid': source, 'uid2': target}) user_edge_new.to_csv(os.path.join(save_path, 'user_edge.csv'), index=False) user_field.to_csv(os.path.join(save_path, 'user_field.csv'), index=False) user_label.to_csv(os.path.join(save_path, 'user_labels.csv'), index=False) user_label[['user_id','SALARY']].to_csv(os.path.join(save_path, 'user_salary.csv'), index=False) user_salary = user_label[['user_id', 'SALARY']] print('User salary size', user_salary.size) user_label[['user_id','AGE']].to_csv(os.path.join(save_path, 'user_age.csv'), index=False) user_label[['user_id','MP']].to_csv(os.path.join(save_path, 'user_mp.csv'), index=False) user_label[['user_id','FG']].to_csv(os.path.join(save_path, 'user_fg.csv'), index=False) user_label[['user_id','country']].to_csv(os.path.join(save_path, 'user_country.csv'), index=False) user_label[['user_id','player_height']].to_csv(os.path.join(save_path, 'user_player_height.csv'), index=False) user_label[['user_id','player_weight']].to_csv(os.path.join(save_path, 'user_player_weight.csv'), index=False) NUM_FIELD = 10 #np.random_seed(42) # load user_field.csv user_field = field_reader(os.path.join(save_path, 'user_field.csv')) print("Shapes of user with field:", user_field.shape) print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1))) neighs = get_neighs(user_field) sample_neighs = [] for i in range(len(neighs)): sample_neighs.append(list(sample_neigh(neighs[i], NUM_FIELD))) sample_neighs = np.array(sample_neighs) np.save(os.path.join(save_path, 'user_field.npy'), sample_neighs) user_field_new = sample_neighs user_edge_path = './user_edge.csv' user_field_new_path = './user_field.npy' user_salary_path = './user_salary.csv' user_label_path = './user_labels.csv' return user_edge_path, user_field_new_path, user_salary_path, user_label_path def get_count(tp, id): playcount_groupbyid = tp[[id]].groupby(id, as_index=True) count = playcount_groupbyid.size() return count def filter_triplets(tp, user, item, min_uc=0, min_sc=0): # Only keep the triplets for users who clicked on at least min_uc items if min_uc > 0: usercount = get_count(tp, user) tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])] # Only keep the triplets for items which were clicked on by at least min_sc users. if min_sc > 0: itemcount = get_count(tp, item) tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])] # Update both usercount and itemcount after filtering usercount, itemcount = get_count(tp, user), get_count(tp, item) return tp, usercount, itemcount def col_map(df, col, num2id): df[[col]] = df[[col]].applymap(lambda x: num2id[x]) return df def label_map(label_df, label_list): for label in label_list: label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))} label_df = col_map(label_df, label, label2id) return label_df def field_reader(path): """ Reading the sparse field matrix stored as csv from the disk. :param path: Path to the csv file. :return field: csr matrix of field. """ user_field = pd.read_csv(path) user_index = user_field["user_id"].values.tolist() field_index = user_field["AGE"].values.tolist() user_count = max(user_index)+1 field_count = max(field_index)+1 field_index = sp.csr_matrix((np.ones_like(user_index), (user_index, field_index)), shape=(user_count, field_count)) return field_index #user_field = field_reader(os.path.join(save_path, 'user_field.csv')) #print("Shapes of user with field:", user_field.shape) #print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1))) def get_neighs(csr): neighs = [] # t = time.time() idx = np.arange(csr.shape[1]) for i in range(csr.shape[0]): x = csr[i, :].toarray()[0] > 0 neighs.append(idx[x]) # if i % (10*1000) == 0: # print('sec/10k:', time.time()-t) return neighs def sample_neigh(neigh, num_sample): if len(neigh) >= num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=False) elif len(neigh) < num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=True) return sample_neigh def apply_bin_columns(df, onehot_bin_columns): for column in df: if column in onehot_bin_columns: df[column] = df[column].astype(int) return df def apply_cat_columns(df, onehot_cat_columns): df = pd.get_dummies(df, columns=onehot_cat_columns) return df