import pandas as pd import numpy as np import torch import dgl import fastText from fainress_component import disparate_impact_remover, reweighting, sample def tec_RHGN_pre_process(df, df_user, df_click, df_item, sens_attr, label, special_case, debaising_approach=None): # load and clean data if debaising_approach != None: if special_case == True: df_user.dropna(inplace=True) age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4} df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x]) df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True) # binarize age df_user = apply_bin_age(df_user) #df_extra = df[['cid1_name', 'cid2_name ', 'cid3_name']].copy() #df.drop(columns=["cid1_name", "cid2_name ", "cid3_name", "item_name", "seg_name"], inplace=True) if debaising_approach == 'disparate_impact_remover': df_user = disparate_impact_remover(df_user, sens_attr, label) elif debaising_approach == 'reweighting': df_user = reweighting(df_user, sens_attr, label) elif debaising_approach == 'sample': df_user = sample(df_user, sens_attr, label) else: df.dropna(inplace=True) age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4} df[["age_range"]] = df[["age_range"]].applymap(lambda x:age_dic[x]) df.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True) df = apply_bin_age(df) df_extra = df[['cid1_name', 'cid2_name ', 'cid3_name']].copy() df.drop(columns=["cid1_name", "cid2_name ", "cid3_name", "item_name", "seg_name"], inplace=True) if debaising_approach == 'disparate_impact_remover': df = disparate_impact_remover(df, sens_attr, label) elif debaising_approach == 'reweighting': df = reweighting(df, sens_attr, label) elif debaising_approach == 'sample': df = sample(df, sens_attr, label) df_user, df_item, df_click = divide_data2(df) else: if special_case == False: print('special case is False') df_user, df_item, df_click = divide_data(df) # df_user process df_user.dropna(inplace=True) age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4} df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x]) df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True) # binarize age df_user = apply_bin_age(df_user) # df_item process df_item.dropna(inplace=True) df_item.rename(columns={"item_id":"pid", "brand_code":"brand"}, inplace=True) df_item.reset_index(drop=True, inplace=True) df_item = df_item.sample(frac=0.15, random_state=11) df_item.reset_index(drop=True, inplace=True) # df_click process df_click.dropna(inplace=True) df_click.rename(columns={"user_id":"uid", "item_id":"pid"}, inplace=True) df_click.reset_index(drop=True, inplace=True) df_click = df_click.sample(frac=0.15, random_state=11) df_click.reset_index(drop=True, inplace=True) df_click = df_click[df_click["uid"].isin(df_user["uid"])] df_click = df_click[df_click["pid"].isin(df_item["pid"])] df_click.drop_duplicates(inplace=True) df_click.reset_index(drop=True, inplace=True) # Before filtering users = set(df_click.uid.tolist()) items = set(df_click.pid.tolist()) print('User before filtering {} and items before filtering {}'.format(len(users), len(items))) df_click, uid_activity, pid_popularity = filter_triplets(df_click, 'uid', 'pid', min_uc=0, min_sc=2) sparsity = 1. * df_click.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0]) print("After filtering, there are %d interaction events from %d users and %d items (sparsity: %.4f%%)" % (df_click.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100)) # After filtering users = set(df_click.uid.tolist()) items = set(df_click.pid.tolist()) print('Users after filtering {} and items after filtering {}'.format(len(users), len(items))) # Process df_user = df_user[df_user['uid'].isin(users)] df_item = df_item[df_item['pid'].isin(items)] df_user.reset_index(drop=True, inplace=True) df_item.reset_index(drop=True, inplace=True) df_user = df_user.astype({"uid": "str"}, copy=False) df_item = df_item.astype({'pid': 'str', 'cid1': 'str', 'cid2': 'str', 'cid3': 'str', 'brand': 'str'}, copy=False) df_click = df_click.astype({'uid': 'str', 'pid': 'str'}, copy=False) if debaising_approach != None and special_case == True: df_user.uid = df_user.uid.astype(float).astype(int) # works df_user.uid = df_user.uid.astype(str) # Build a dictionary and remove duplicate items if debaising_approach != None and special_case == False: user_dic = {k: v for v,k in enumerate(df_user.uid)} cid1_dic = {k: v for v,k in enumerate(df_extra.cid1_name.drop_duplicates())} cid2_dic = {k: v for v,k in enumerate(df_extra['cid2_name'].drop_duplicates())} cid3_dic = {k: v for v,k in enumerate(df_extra.cid3_name.drop_duplicates())} brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())} else: user_dic = {k: v for v,k in enumerate(df_user.uid)} cid1_dic = {k: v for v, k in enumerate(df_item.cid1_name.drop_duplicates())} cid2_dic = {k: v for v, k in enumerate(df_item['cid2_name'].drop_duplicates())} cid3_dic = {k: v for v, k in enumerate(df_item.cid3_name.drop_duplicates())} brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())} item_dic = {} c1, c2, c3, brand = [], [], [], [] for i in range(len(df_item)): k = df_item.at[i,'pid'] v = i item_dic[k] = v if debaising_approach != None and special_case == False: c1.append(cid1_dic[df_extra.at[i,'cid1_name']]) c2.append(cid2_dic[df_extra.at[i,'cid2_name']]) c3.append(cid3_dic[df_extra.at[i,'cid3_name']]) brand.append(brand_dic[df_item.at[i,'brand']]) else: c1.append(cid1_dic[df_item.at[i,'cid1_name']]) c2.append(cid2_dic[df_item.at[i,'cid2_name']]) c3.append(cid3_dic[df_item.at[i,'cid3_name']]) brand.append(brand_dic[df_item.at[i,'brand']]) if debaising_approach != None: df_item.drop(columns=["price"], inplace=True) else: df_item.drop(columns=["cid1_name", "cid2_name", "cid3_name", "price", "item_name", "seg_name"], inplace=True) #df_user['bin_age'] = df_user['bin_age'].replace(1,2) #df_user['bin_age'] = df_user['bin_age'].replace(0,1) #df_user['bin_age'] = df_user['bin_age'].replace(2,0) if debaising_approach != None: if 'bin_age' not in df_user: df_user = df_user.join(df_user['bin_age']) # Save? # Generate Graph G, cid1_feature, cid2_feature, cid3_feature, brand_feature = generate_graph(df_user, df_item, df_click, user_dic, item_dic, cid1_dic, cid2_dic, cid3_dic, brand_dic, c1, c2, c3, brand, debaising_approach) return G, cid1_feature, cid2_feature, cid3_feature, brand_feature # brand_feature not used (same as cid4_feature?) def divide_data(df): df_user = df[['user_id', 'gender', 'age_range']].copy() df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'cid1_name', 'cid2_name', 'cid3_name','brand_code', 'price', 'item_name', 'seg_name']].copy() df_click = df[['user_id', 'item_id']].copy() return df_user, df_item, df_click def divide_data2(df): df_user = df[['uid', 'gender', 'age']].copy() df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'brand_code', 'price']].copy() df_click = df[['uid', 'item_id']].copy() return df_user, df_item, df_click def apply_bin_age(df_user): df_user["bin_age"] = df_user["age"] df_user["bin_age"] = df_user["bin_age"].replace(1,0) df_user["bin_age"] = df_user["bin_age"].replace(2,1) df_user["bin_age"] = df_user["bin_age"].replace(3,1) df_user["bin_age"] = df_user["bin_age"].replace(4,1) return df_user def get_count(tp, id): playcount_groupbyid = tp[[id]].groupby(id, as_index=True) count = playcount_groupbyid.size() return count def filter_triplets(tp, user, item, min_uc=0, min_sc=0): # Only keep the triplets for users who clicked on at least min_uc items if min_uc > 0: usercount = get_count(tp, user) tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])] # Only keep the triplets for items which were clicked on by at least min_sc users. if min_sc > 0: itemcount = get_count(tp, item) tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])] # Update both usercount and itemcount after filtering usercount, itemcount = get_count(tp, user), get_count(tp, item) return tp, usercount, itemcount def generate_graph(df_user, df_item, df_click, user_dic, item_dic, cid1_dic, cid2_dic, cid3_dic, brand_dic, c1, c2, c3, brand, debaising_approach): u = {v:k for k,v in user_dic.items()} i = {v:k for k,v in item_dic.items()} click_user = [user_dic[user] for user in df_click.uid] click_item = [item_dic[item] for item in df_click.pid] data_dict = { ('user', 'click', 'item'): (torch.tensor(click_user), torch.tensor(click_item)), ('item', 'click-by', 'user'): (torch.tensor(click_item), torch.tensor(click_user)) } G = dgl.heterograph(data_dict) # todo import the fasttext correctly model = fasttext.load_model('../cc.zh.200.bin') temp = {k: model.get_sentence_vector(v) for v, k in cid1_dic.items()} cid1_feature = torch.tensor([temp[k] for _, k in cid1_dic.items()]) temp = {k: model.get_sentence_vector(v) for v, k in cid2_dic.items()} cid2_feature = torch.tensor([temp[k] for _, k in cid2_dic.items()]) temp = {k: model.get_sentence_vector(v) for v, k in cid3_dic.items()} cid3_feature = torch.tensor([temp[k] for _, k in cid3_dic.items()]) temp = {k: model.get_sentence_vector(v) for v, k in brand_dic.items()} brand_feature = torch.tensor([temp[k] for _, k in brand_dic.items()]) # Passing labels into label if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'reweighting': df_user['gender'] = df_user['gender'].astype(np.int64) label_gender = df_user.gender label_age = df_user.age label_bin_age = df_user.bin_age G.nodes['user'].data['gender'] = torch.tensor(label_gender[:G.number_of_nodes('user')]) G.nodes['user'].data['age'] = torch.tensor(label_age[:G.number_of_nodes('user')]) G.nodes['user'].data['bin_age'] = torch.tensor(label_bin_age[:G.number_of_nodes('user')]) G.nodes['item'].data['cid1'] = torch.tensor(c1[:G.number_of_nodes('item')]) G.nodes['item'].data['cid2'] = torch.tensor(c2[:G.number_of_nodes('item')]) G.nodes['item'].data['cid3'] = torch.tensor(c3[:G.number_of_nodes('item')]) G.nodes['item'].data['brand'] = torch.tensor(brand[:G.number_of_nodes('item')]) return G, cid1_feature, cid2_feature, cid3_feature, brand_feature