import os
from openai import OpenAI
import gradio as gr
from typing import List, Optional, Tuple, Dict, Iterator
# 🛠 Безопасная загрузка API-ключа
#GROQ_API_KEY = "ВАШ_КЛЮЧ" # Укажите API-ключ явно
GROQ_API_KEY = os.environ.get('GROQ_API_KEY')
# 🛠 Инициализация клиента
client = OpenAI(
api_key=GROQ_API_KEY,
base_url="https://api.groq.com/openai/v1",
)
# 🛠 Форматы данных
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
# 🛠 Функции работы с историей чата
def clear_session() -> Tuple[str, History]:
return '', []
def modify_system_session(system: str) -> Tuple[str, str, History]:
return system, system, []
def history_to_messages(history: History, system: str) -> Messages:
messages = [{'role': 'system', 'content': system}]
for user_msg, ai_response in history:
messages.append({'role': 'user', 'content': user_msg})
messages.append({'role': 'assistant', 'content': ai_response})
return messages
# 🛠 Функция общения с моделью
def model_chat(query: Optional[str], history: Optional[History], system: str, model_name: str) -> Iterator[List[Dict[str, str]]]:
if not query:
return
if history is None:
history = []
messages = history_to_messages(history, system)
messages.append({'role': 'user', 'content': query})
try:
response = client.chat.completions.create(
model=model_name,
messages=messages,
stream=True
)
full_response = ""
for chunk in response:
if hasattr(chunk, "choices") and chunk.choices:
delta = chunk.choices[0].delta
content = getattr(delta, "content", "")
if content:
full_response += content
yield [{"role": "assistant", "content": full_response}], history + [(query, full_response)], system
except Exception as e:
import traceback
error_message = traceback.format_exc()
yield [{"role": "system", "content": f"Ошибка: {error_message}"}], history, system
# 🛠 Корректное отображение выбора модели
def choose_radio(model_name: str, system: str):
return (
gr.Markdown(value=f"
{model_name}👾"),
gr.Chatbot(label=model_name, type='messages'),
system,
system,
""
)
# 🛠 Основной интерфейс
def main():
with gr.Blocks() as demo:
with gr.Row():
options_coder = [
"qwen-2.5-coder-32b",
"qwen-qwq-32b",
"deepseek-r1-distill-qwen-32b",
"deepseek-r1-distill-llama-70b",
"llama-3.2-90b-vision-preview",
"llama-3.3-70b-versatile",
"llama-3.1-8b-instant"
]
radio = gr.Radio(choices=options_coder, label="Модель:", value="qwen-2.5-coder-32b")
with gr.Row():
with gr.Accordion():
mark_ = gr.Markdown("Qwen2.5-Coder-32B-Instruct Bot👾")
system_input = gr.Textbox(value="Ваша задача — проверка синтаксиса и структуры предоставленного кода.", lines=1, label='System')
modify_system = gr.Button("🛠️ Установить системный промпт и очистить историю")
system_state = gr.Textbox(value="", visible=False)
chatbot = gr.Chatbot(label='Qwen2.5-Coder-32B-Instruct', type='messages')
textbox = gr.Textbox(lines=1, label='Ввод')
with gr.Row():
clear_history = gr.Button("🧹 Очистить историю")
submit = gr.Button("🚀 Отправить")
textbox.submit(model_chat, inputs=[textbox, chatbot, system_state, radio], outputs=[chatbot, chatbot, system_input])
submit.click(model_chat, inputs=[textbox, chatbot, system_state, radio], outputs=[chatbot, chatbot, system_input])
clear_history.click(fn=clear_session, inputs=[], outputs=[textbox, chatbot, system_input])
modify_system.click(fn=modify_system_session, inputs=[system_input], outputs=[system_state, system_input, chatbot])
radio.change(choose_radio, inputs=[radio, system_input], outputs=[mark_, chatbot, system_state, system_input, textbox])
demo.queue(api_open=False)
demo.launch()
# Функция теста API
def test_api():
chat_completion = client.chat.completions.create(
model="deepseek-r1-distill-llama-70b",
messages=[{"role": "user", "content": "What's the purpose of Generative AI?"}],
)
print(chat_completion.choices[0].message.content)
if __name__ == "__main__":
main()
test_api()