Spaces:
Runtime error
Runtime error
File size: 4,899 Bytes
16a6662 0ffe0e0 0ce2567 6cbadc6 16a6662 81bc43b 0ce2567 21ccc58 0ce2567 026bcae 0ce2567 6cbadc6 0ce2567 0ffe0e0 81bc43b 0ffe0e0 0ce2567 6cbadc6 16a6662 4af7e0e 6cbadc6 16a6662 683c54c 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 16a6662 4af7e0e 16a6662 683c54c 0ffe0e0 16a6662 4af7e0e 16a6662 683c54c 6cbadc6 16a6662 6cbadc6 0ffe0e0 6cbadc6 0ffe0e0 0ce2567 0ffe0e0 0ce2567 0ffe0e0 0ce2567 6cbadc6 0ce2567 0ffe0e0 0ce2567 0ffe0e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
import streamlit as st
from PyPDF2 import PdfReader
import numpy as np
from groq import Groq
import faiss
import fitz
from io import BytesIO
# Function to set up Groq API client
def get_groq_client():
api_key = os.getenv("groq_api")
if not api_key:
raise ValueError("Groq API key not found in environment variables.")
return Groq(api_key=api_key)
groq_client = get_groq_client()
# Function to extract text from PDF
def extract_pdf_content(uploaded_file):
pdf_stream = BytesIO(uploaded_file.read()) # Convert to file-like object
doc = fitz.open(stream=pdf_stream, filetype="pdf")
content = ""
for page in doc:
content += page.get_text()
return content
# Function to split content into chunks
def chunk_text(text, chunk_size=500):
words = text.split()
return [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
# Function to compute embeddings using Groq's Llama3-70B-8192 model
def compute_embeddings(text_chunks):
embeddings = []
for chunk in text_chunks:
response = groq_client.chat.completions.create(
messages=[{"role": "user", "content": chunk}],
model="llama3-70b-8192"
)
# Access the embedding content from the response
embedding = response.choices[0].message.content
embedding_array = np.fromstring(embedding, sep=",") # Convert string to NumPy array
embeddings.append(embedding_array)
return np.array(embeddings)
# Function to build FAISS index
def build_faiss_index(embeddings):
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension) # L2 distance for similarity
index.add(embeddings)
return index
# Function to search in FAISS index
def search_faiss_index(index, query_embedding, text_chunks, top_k=3):
distances, indices = index.search(query_embedding, top_k)
return [(text_chunks[idx], distances[0][i]) for i, idx in enumerate(indices[0])]
# Function to generate professional content using Groq's Llama3-70B-8192 model
def generate_professional_content_groq(topic):
response = groq_client.chat.completions.create(
messages=[{"role": "user", "content": f"Explain '{topic}' in bullet points, highlighting key concepts, examples, and applications for electrical engineering students."}],
model="llama3-70b-8192"
)
# Access content from the response
return response.choices[0].message.content.strip()
# Function to compute query embedding using Groq's Llama3-70B-8192 model
def compute_query_embedding(query):
response = groq_client.chat.completions.create(
messages=[{"role": "user", "content": query}],
model="llama3-70b-8192"
)
# Access embedding content and convert it to a NumPy array
embedding = response.choices[0].message.content
return np.fromstring(embedding, sep=",").reshape(1, -1)
# Streamlit app
st.title("Generative AI for Electrical Engineering Education with FAISS and Groq")
st.sidebar.header("AI-Based Tutor with Vector Search")
# File upload section
uploaded_file = st.sidebar.file_uploader("Upload Study Material (PDF)", type=["pdf"])
topic = st.sidebar.text_input("Enter a topic (e.g., Newton's Third Law)")
if uploaded_file:
try:
# Extract and process file content
content = extract_pdf_content(uploaded_file)
st.sidebar.success(f"{uploaded_file.name} uploaded successfully!")
# Chunk and compute embeddings
chunks = chunk_text(content)
embeddings = compute_embeddings(chunks)
# Build FAISS index
index = build_faiss_index(embeddings)
st.write("**File Processed and Indexed for Search**")
st.write(f"Total chunks created: {len(chunks)}")
except Exception as e:
st.error(f"Error processing file: {e}")
# Generate study material
if st.button("Generate Study Material"):
if topic:
try:
st.header(f"Study Material: {topic}")
# Compute query embedding
query_embedding = compute_query_embedding(topic)
# Search FAISS index
if uploaded_file:
results = search_faiss_index(index, query_embedding, chunks, top_k=3)
st.write("**Relevant Content from Uploaded File:**")
for result, distance in results:
st.write(f"- {result} (Similarity: {distance:.2f})")
else:
st.warning("No file uploaded. Generating AI-based content instead.")
# Generate content using Groq's Llama3-70B-8192 model
ai_content = generate_professional_content_groq(topic)
st.write("**AI-Generated Content (Groq - Llama3-70B-8192):**")
st.write(ai_content)
except Exception as e:
st.error(f"Error generating content: {e}")
else:
st.warning("Please enter a topic!")
|