File size: 6,286 Bytes
fc01824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05cb2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc01824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05cb2a4
 
 
 
 
 
 
 
 
fc01824
05cb2a4
fc01824
 
 
 
 
 
 
05cb2a4
 
 
 
 
 
 
 
fc01824
 
 
 
05cb2a4
 
 
 
 
 
 
 
fc01824
05cb2a4
fc01824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05cb2a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import time
from typing import Dict, List

import gradio as gr
import pandas as pd
from transformers import pipeline


class NERDemo:
    def __init__(self):
        self.ner_pipeline = pipeline(
            "ner",
            model="enesmanan/multilingual-xlm-roberta-ner",
            aggregation_strategy="simple",
        )
        self.supported_languages = {
            "en": "English",
            "de": "German",
            "tr": "Turkish",
            "es": "Spanish",
            "fr": "French",
        }

    def process_ner(self, text: str, language: str) -> Dict:
        """Process text through NER pipeline and return entities with metadata"""
        if not text:
            return {"text": "", "entities": []}

        start_time = time.time()
        entities = self.ner_pipeline(text)
        processing_time = round((time.time() - start_time) * 1000, 2)  # ms

        # Create DataFrame for entity statistics
        if entities:
            df = pd.DataFrame(entities)
            entity_stats = df["entity_group"].value_counts().to_dict()
        else:
            entity_stats = {}

        return {
            "text": text,
            "entities": entities,
            "stats": entity_stats,
            "processing_time": processing_time,
        }

    def create_demo(self) -> gr.Interface:
        """Create and configure the Gradio interface"""

        theme = gr.themes.Base(
            primary_hue="blue",
            secondary_hue="slate",
            font=gr.themes.GoogleFont("Source Sans Pro"),
            neutral_hue="slate",
        ).set(
            body_text_color="*neutral_950",
            block_background_fill="*neutral_50",
            block_border_width="0px",
            button_primary_background_fill="*primary_500",
            button_primary_background_fill_hover="*primary_600",
            button_primary_text_color="white",
            input_background_fill="white",
            block_radius="lg",
        )

        with gr.Blocks(theme=theme) as demo:
            with gr.Row():
                gr.HTML(
                    """
                    <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 1rem; font-family: 'Source Sans Pro', -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Arial', sans-serif;">
                        <h1 style="color: #374151; font-size: 2.5rem; font-weight: 600; margin-bottom: 0.5rem;">
                            Multilingual Named Entity Recognition
                        </h1>
                        <p style="color: #6B7280; font-size: 1.1rem; line-height: 1.5; margin-top: 0.5rem;">
                            This demo uses XLM-RoBERTa model fine-tuned for NER tasks in multiple languages.
                            Automatically detects and highlights named entities such as persons, organizations, locations, and more.
                        </p>
                    </div>
                    """
                )

            with gr.Row():
                with gr.Column(scale=3):
                    text_input = gr.Textbox(
                        label="Input Text",
                        placeholder="Enter text in any supported language...",
                        lines=3,
                    )
                    language = gr.Dropdown(
                        choices=list(self.supported_languages.values()),
                        label="Language (Optional)",
                        value="English",
                    )
                    with gr.Row():
                        submit_btn = gr.Button("Analyze", variant="primary")
                        clear_btn = gr.Button("Clear")

                with gr.Column(scale=2):
                    with gr.Group():
                        gr.HTML(
                            """
                            <div style="margin-bottom: 1rem;">
                                <h3 style="color: #374151; font-size: 1.25rem; font-weight: 600; margin-bottom: 0.5rem;">
                                    Entity Statistics
                                </h3>
                            </div>
                            """
                        )
                        stats_output = gr.Json(label="Detected Entities")
                        time_output = gr.Markdown(elem_classes="text-sm text-gray-600")

            highlighted_output = gr.HighlightedText(
                label="Detected Entities", show_legend=True
            )

            # Example inputs
            examples = [
                [
                    "Emma Watson starred in Harry Potter and studied at Oxford University while working with United Nations.",
                    "English",
                ],
                [
                    "Die Deutsche Bank hat ihren Hauptsitz in Frankfurt, während BMW in München produziert.",
                    "German",
                ],
                [
                    "Enes Fehmi Manan, İzmir'de yaşıyor ve Fibababanka'da çalışıyor.",
                    "Turkish",
                ],
                [
                    "Le Louvre à Paris expose la Joconde de Leonardo da Vinci depuis le XIXe siècle.",
                    "French",
                ],
                [
                    "El Real Madrid jugará contra el Barcelona en el Santiago Bernabéu el próximo mes.",
                    "Spanish",
                ],
            ]

            gr.Examples(examples, inputs=[text_input, language])

            # Event handlers
            def process_and_format(text: str, lang: str) -> tuple:
                result = self.process_ner(text, lang)
                stats = result["stats"]
                time_msg = f"Processing time: {result['processing_time']} ms"
                return (result, stats, time_msg)

            submit_btn.click(
                process_and_format,
                inputs=[text_input, language],
                outputs=[highlighted_output, stats_output, time_output],
            )

            clear_btn.click(
                lambda: (None, None, ""),
                outputs=[highlighted_output, stats_output, time_output],
            )

        return demo


if __name__ == "__main__":
    ner_demo = NERDemo()
    demo = ner_demo.create_demo()
    demo.launch(share=True)