import os, subprocess, shlex, sys, gc from gradio_client import Client client = Client("endless-ai/SDXL", hf_token=os.getenv("HF_TOKEN")) import time import torch import numpy as np import shutil import argparse import gradio as gr import uuid import spaces subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl")) subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl")) subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl")) BASE_DIR = os.path.dirname(os.path.abspath(__file__)) os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r"))) os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "submodules", "mast3r", "dust3r"))) # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' from dust3r.inference import inference from dust3r.model import AsymmetricCroCo3DStereo from dust3r.utils.device import to_numpy from dust3r.image_pairs import make_pairs from dust3r.cloud_opt import global_aligner, GlobalAlignerMode from utils.dust3r_utils import compute_global_alignment, load_images, storePly, save_colmap_cameras, save_colmap_images from argparse import ArgumentParser from arguments import ModelParams, PipelineParams, OptimizationParams from train_feat2gs import training from run_video import render_sets GRADIO_CACHE_FOLDER = './gradio_cache_folder' from utils.feat_utils import FeatureExtractor from dust3r.demo import _convert_scene_output_to_glb ############################################################################################################################################# def get_dust3r_args_parser(): parser = argparse.ArgumentParser() parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size") parser.add_argument("--model_path", type=str, default="naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt", help="path to the model weights") parser.add_argument("--device", type=str, default='cuda', help="pytorch device") parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--schedule", type=str, default='linear') parser.add_argument("--lr", type=float, default=0.01) parser.add_argument("--niter", type=int, default=300) parser.add_argument("--focal_avg", type=bool, default=True) parser.add_argument("--n_views", type=int, default=3) parser.add_argument("--base_path", type=str, default=GRADIO_CACHE_FOLDER) parser.add_argument("--feat_dim", type=int, default=256, help="PCA dimension. If None, PCA is not applied, and the original feature dimension is retained.") parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.") parser.add_argument("--vis_feat", action="store_true", default=True, help="Visualize features") parser.add_argument("--vis_key", type=str, default=None, help="Feature type to visualize (only for mast3r), e.g., 'decfeat' or 'desc'") parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'") return parser @spaces.GPU(duration=300) def run_dust3r(inputfiles, input_path=None): if input_path is not None: imgs_path = './assets/example/' + input_path imgs_names = sorted(os.listdir(imgs_path)) inputfiles = [] for imgs_name in imgs_names: file_path = os.path.join(imgs_path, imgs_name) print(file_path) inputfiles.append(file_path) print(inputfiles) # ------ Step(1) DUSt3R initialization & Feature extraction ------ # os.system(f"rm -rf {GRADIO_CACHE_FOLDER}") parser = get_dust3r_args_parser() opt = parser.parse_args() method = opt.method tmp_user_folder = str(uuid.uuid4()).replace("-", "") opt.img_base_path = os.path.join(opt.base_path, tmp_user_folder) img_folder_path = os.path.join(opt.img_base_path, "images") model = AsymmetricCroCo3DStereo.from_pretrained(opt.model_path).to(opt.device) os.makedirs(img_folder_path, exist_ok=True) opt.n_views = len(inputfiles) if opt.n_views == 1: raise gr.Error("The number of input images should be greater than 1.") print("Multiple images: ", inputfiles) # for image_file in inputfiles: # image_path = image_file.name if hasattr(image_file, 'name') else image_file # shutil.copy(image_path, img_folder_path) for image_path in inputfiles: if input_path is not None: shutil.copy(image_path, img_folder_path) else: shutil.move(image_path, img_folder_path) train_img_list = sorted(os.listdir(img_folder_path)) assert len(train_img_list)==opt.n_views, f"Number of images in the folder is not equal to {opt.n_views}" images, ori_size = load_images(img_folder_path, size=512) # images, ori_size, imgs_resolution = load_images(img_folder_path, size=512) # resolutions_are_equal = len(set(imgs_resolution)) == 1 # if resolutions_are_equal == False: # raise gr.Error("The resolution of the input image should be the same.") print("ori_size", ori_size) start_time = time.time() ###################################################### pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True) output = inference(pairs, model, opt.device, batch_size=opt.batch_size) scene = global_aligner(output, device=opt.device, mode=GlobalAlignerMode.PointCloudOptimizer) loss = compute_global_alignment(scene=scene, init="mst", niter=opt.niter, schedule=opt.schedule, lr=opt.lr, focal_avg=opt.focal_avg) scene = scene.clean_pointcloud() imgs = to_numpy(scene.imgs) focals = scene.get_focals() poses = to_numpy(scene.get_im_poses()) pts3d = to_numpy(scene.get_pts3d()) scene.min_conf_thr = float(scene.conf_trf(torch.tensor(1.0))) confidence_masks = to_numpy(scene.get_masks()) intrinsics = to_numpy(scene.get_intrinsics()) ###################################################### end_time = time.time() print(f"Time taken for {opt.n_views} views: {end_time-start_time} seconds") output_colmap_path=img_folder_path.replace("images", f"sparse/0/{method}") # Feature extraction for per point(per pixel) extractor = FeatureExtractor(images, opt, method) feats = extractor(scene=scene) feat_type_str = '-'.join(extractor.feat_type) output_colmap_path = os.path.join(output_colmap_path, feat_type_str) os.makedirs(output_colmap_path, exist_ok=True) outfile = _convert_scene_output_to_glb(output_colmap_path, imgs, pts3d, confidence_masks, focals, poses, as_pointcloud=True, cam_size=0.03) feat_image_path = os.path.join(opt.img_base_path, "feat_dim0-9_dust3r.png") save_colmap_cameras(ori_size, intrinsics, os.path.join(output_colmap_path, 'cameras.txt')) save_colmap_images(poses, os.path.join(output_colmap_path, 'images.txt'), train_img_list) pts_4_3dgs = np.concatenate([p[m] for p, m in zip(pts3d, confidence_masks)]) color_4_3dgs = np.concatenate([p[m] for p, m in zip(imgs, confidence_masks)]) color_4_3dgs = (color_4_3dgs * 255.0).astype(np.uint8) feat_4_3dgs = np.concatenate([p[m] for p, m in zip(feats, confidence_masks)]) storePly(os.path.join(output_colmap_path, f"points3D.ply"), pts_4_3dgs, color_4_3dgs, feat_4_3dgs) del scene torch.cuda.empty_cache() gc.collect() return outfile, feat_image_path, opt, None, None run_dust3r.zerogpu = True @spaces.GPU(duration=300) def run_feat2gs(opt, niter=2000): if opt is None: raise gr.Error("Please run Step 1 first!") try: if not os.path.exists(opt.img_base_path): raise ValueError(f"Input path does not exist: {opt.img_base_path}") if not os.path.exists(os.path.join(opt.img_base_path, "images")): raise ValueError("Input images not found. Please run Step 1 first") if not os.path.exists(os.path.join(opt.img_base_path, f"sparse/0/{opt.method}")): raise ValueError("DUSt3R output not found. Please run Step 1 first") # ------ Step(2) Readout 3DGS from features & Jointly optimize pose ------ parser = ArgumentParser(description="Training script parameters") lp = ModelParams(parser) op = OptimizationParams(parser) pp = PipelineParams(parser) parser.add_argument('--debug_from', type=int, default=-1) parser.add_argument("--test_iterations", nargs="+", type=int, default=[]) parser.add_argument("--save_iterations", nargs="+", type=int, default=[]) parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[]) parser.add_argument("--start_checkpoint", type=str, default = None) parser.add_argument("--scene", type=str, default="demo") parser.add_argument("--n_views", type=int, default=3) parser.add_argument("--get_video", action="store_true") parser.add_argument("--optim_pose", type=bool, default=True) parser.add_argument("--feat_type", type=str, nargs='*', default=["dust3r",], help="Feature type(s). Multiple types can be specified for combination.") parser.add_argument("--method", type=str, default='dust3r', help="Method of Initialization, e.g., 'dust3r' or 'mast3r'") parser.add_argument("--feat_dim", type=int, default=256, help="Feture dimension after PCA . If None, PCA is not applied.") parser.add_argument("--model", type=str, default='Gft', help="Model of Feat2gs, 'G'='geometry'/'T'='texture'/'A'='all'") parser.add_argument("--dataset", default="demo", type=str) parser.add_argument("--resize", action="store_true", default=False, help="If True, resize rendering to square") args = parser.parse_args(sys.argv[1:]) args.iterations = niter args.save_iterations.append(args.iterations) args.model_path = opt.img_base_path + '/output/' args.source_path = opt.img_base_path # args.model_path = GRADIO_CACHE_FOLDER + '/output/' # args.source_path = GRADIO_CACHE_FOLDER args.iteration = niter os.makedirs(args.model_path, exist_ok=True) training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args) output_ply_path = opt.img_base_path + f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply' # output_ply_path = GRADIO_CACHE_FOLDER+ f'/output/point_cloud/iteration_{args.iteration}/point_cloud.ply' torch.cuda.empty_cache() gc.collect() return output_ply_path, args, None except Exception as e: raise gr.Error(f"Step 2 failed: {str(e)}") run_feat2gs.zerogpu = True @spaces.GPU(duration=300) def run_render(opt, args, cam_traj='ellipse'): if opt is None or args is None: raise gr.Error("Please run Steps 1 and 2 first!") try: iteration_path = os.path.join(opt.img_base_path, f"output/point_cloud/iteration_{args.iteration}/point_cloud.ply") if not os.path.exists(iteration_path): raise ValueError("Training results not found. Please run Step 2 first") # ------ Step(3) Render video with camera trajectory ------ parser = ArgumentParser(description="Testing script parameters") model = ModelParams(parser, sentinel=True) pipeline = PipelineParams(parser) args.eval = True args.get_video = True args.n_views = opt.n_views args.cam_traj = cam_traj render_sets( model.extract(args), args.iteration, pipeline.extract(args), args, ) output_video_path = opt.img_base_path + f'/output/videos/demo_{opt.n_views}_view_{args.cam_traj}.mp4' torch.cuda.empty_cache() gc.collect() return output_video_path except Exception as e: raise gr.Error(f"Step 3 failed: {str(e)}") run_render.zerogpu = True # @spaces.GPU(duration=1000) # def process_example(inputfiles, input_path): # dust3r_model, feat_image, dust3r_state, _, _ = run_dust3r(inputfiles, input_path=input_path) # output_model, feat2gs_state, _ = run_feat2gs(dust3r_state, niter=2000) # output_video = run_render(dust3r_state, feat2gs_state, cam_traj='interpolated') # return dust3r_model, feat_image, output_model, output_video def reset_dust3r_state(): return None, None, None, None, None def reset_feat2gs_state(): return None, None, None _TITLE = '''Feat2GS Demo''' _DESCRIPTION = '''