Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,532 Bytes
123719b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
import os
import torch
import torchvision.transforms as tvf
import torch.nn.functional as F
import numpy as np
from dust3r.utils.device import to_numpy
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from utils.dust3r_utils import compute_global_alignment
from mast3r.model import AsymmetricMASt3R
from mast3r.cloud_opt.sparse_ga import sparse_global_alignment
from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess
from hydra.utils import instantiate
from omegaconf import OmegaConf
class TorchPCA(object):
def __init__(self, n_components):
self.n_components = n_components
def fit(self, X):
self.mean_ = X.mean(dim=0)
unbiased = X - self.mean_.unsqueeze(0)
U, S, V = torch.pca_lowrank(unbiased, q=self.n_components, center=False, niter=50)
self.components_ = V.T
self.singular_values_ = S
return self
def transform(self, X):
t0 = X - self.mean_.unsqueeze(0)
projected = t0 @ self.components_.T
return projected
def pca(stacked_feat, dim):
flattened_feats = []
for feat in stacked_feat:
H, W, C = feat.shape
feat = feat.reshape(H * W, C).detach()
flattened_feats.append(feat)
x = torch.cat(flattened_feats, dim=0)
fit_pca = TorchPCA(n_components=dim).fit(x)
projected_feats = []
for feat in stacked_feat:
H, W, C = feat.shape
feat = feat.reshape(H * W, C).detach()
x_red = fit_pca.transform(feat)
projected_feats.append(x_red.reshape(H, W, dim))
projected_feats = torch.stack(projected_feats)
return projected_feats
def upsampler(feature, upsampled_height, upsampled_width, max_chunk=None):
"""
Upsample the feature tensor to the specified height and width.
Args:
- feature (torch.Tensor): The input tensor with size [B, H, W, C].
- upsampled_height (int): The target height after upsampling.
- upsampled_width (int): The target width after upsampling.
Returns:
- upsampled_feature (torch.Tensor): The upsampled tensor with size [B, upsampled_height, upsampled_width, C].
"""
# Permute the tensor to [B, C, H, W] for interpolation
feature = feature.permute(0, 3, 1, 2)
# Perform the upsampling
if max_chunk:
upsampled_chunks = []
for i in range(0, len(feature), max_chunk):
chunk = feature[i:i+max_chunk]
upsampled_chunk = F.interpolate(chunk, size=(upsampled_height, upsampled_width), mode='bilinear', align_corners=False)
upsampled_chunks.append(upsampled_chunk)
upsampled_feature = torch.cat(upsampled_chunks, dim=0)
else:
upsampled_feature = F.interpolate(feature, size=(upsampled_height, upsampled_width), mode='bilinear', align_corners=False)
# Permute back to [B, H, W, C]
upsampled_feature = upsampled_feature.permute(0, 2, 3, 1)
return upsampled_feature
def visualizer(features, images, save_dir, dim=9, feat_type=None, file_name=None):
"""
Visualize features and corresponding images, and save the result.
Args:
features (torch.Tensor): Feature tensor with shape [B, H, W, C].
images (list): List of dictionaries containing images with keys 'img'. Each image tensor has shape [1, 3, H, W]
and values in the range [-1, 1].
save_dir (str): Directory to save the resulting visualization.
feat_type (list): List of feature types.
file_name (str): Name of the file to save.
"""
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import torchvision.utils as vutils
assert features.dim() == 4, "Input tensor must have 4 dimensions (B, H, W, C)"
B, H, W, C = features.size()
features = features[..., dim-9:]
# Normalize the 3-dimensional feature to range [0, 1]
features_min = features.min(dim=0, keepdim=True).values.min(dim=1, keepdim=True).values.min(dim=2, keepdim=True).values
features_max = features.max(dim=0, keepdim=True).values.max(dim=1, keepdim=True).values.max(dim=2, keepdim=True).values
features = (features - features_min) / (features_max - features_min)
##### Save individual feature maps
# # Create subdirectory for feature visualizations
# feat_dir = os.path.join(save_dir, 'feature_maps')
# if feat_type:
# feat_dir = os.path.join(feat_dir, '-'.join(feat_type))
# os.makedirs(feat_dir, exist_ok=True)
# for i in range(B):
# # Extract and save the feature map (channels 3-6)
# feat_map = features[i, :, :, 3:6].permute(2, 0, 1) # [3, H, W]
# save_path = os.path.join(feat_dir, f'{i}_feat.png')
# vutils.save_image(feat_map, save_path, normalize=False)
# return feat_dir
##### Save feature maps in a single image
# Set the size of the plot
fig, axes = plt.subplots(B, 4, figsize=(W*4*0.01, H*B*0.01))
for i in range(B):
# Get the original image
image_tensor = images[i]['img']
assert image_tensor.dim() == 4 and image_tensor.size(0) == 1 and image_tensor.size(1) == 3, "Image tensor must have shape [1, 3, H, W]"
image = image_tensor.squeeze(0).permute(1, 2, 0).numpy() # Convert to (H, W, 3)
# Scale image values from [-1, 1] to [0, 1]
image = (image + 1) / 2
ax = axes[i, 0] if B > 1 else axes[0]
ax.imshow(image)
ax.axis('off')
# Visualize each 3-dimensional feature
for j in range(3):
ax = axes[i, j+1] if B > 1 else axes[j+1]
if j * 3 < min(C, dim): # Check if the feature channels are available
feature_to_plot = features[i, :, :, j*3:(j+1)*3].cpu().numpy()
ax.imshow(feature_to_plot)
else: # Plot white image if features are not available
ax.imshow(torch.ones(H, W, 3).numpy())
ax.axis('off')
# Reduce margins and spaces between images
plt.subplots_adjust(wspace=0.005, hspace=0.005, left=0.01, right=0.99, top=0.99, bottom=0.01)
# Save the entire plot
if file_name is None:
file_name = f'feat_dim{dim-9}-{dim}'
if feat_type:
feat_type_str = '-'.join(feat_type)
file_name = file_name + f'_{feat_type_str}'
save_path = os.path.join(save_dir, file_name + '.png')
plt.savefig(save_path, bbox_inches='tight', pad_inches=0)
plt.close()
return save_path
#### Open it if you visualize feature maps in Feat2GS's teaser
# import matplotlib.colors as mcolors
# from PIL import Image
# morandi_colors = [
# '#8AA2A9', '#C98474', '#F2D0A9', '#8D9F87', '#A7A7A7', '#D98E73', '#B24C33', '#5E7460', '#4A6B8A', '#B2CBC2',
# '#BBC990', '#6B859E', '#B45342', '#4E0000', '#3D0000', '#2C0000', '#1B0000', '#0A0000', '#DCAC99', '#6F936B',
# '#EBA062', '#FED273', '#9A8EB4', '#706052', '#E9E5E5', '#C4D8D2', '#F2CBBD', '#F6F9F1', '#C5CABC', '#A3968B',
# '#5C6974', '#BE7B6E', '#C67752', '#C18830', '#8C956C', '#CAC691', '#819992', '#4D797F', '#95AEB2', '#B6C4CF',
# '#84291C', '#B9551F', '#A96400', '#374B6C', '#C8B493', '#677D5D', '#9882A2', '#2D5F53', '#D2A0AC', '#658D9A',
# '#9A7265', '#EFE1D2', '#DDD8D1', '#D2C6BC', '#E3C9BC', '#B8AB9F', '#D8BEA4', '#E0D4C5', '#B8B8B6', '#D0CAC3',
# '#9AA8B5', '#BBC9B9', '#E3E8D8', '#ADB3A4', '#C5C9BB', '#A3968B', '#C2A995', '#EDE1D1', '#EDE8E1', '#EDEBE1',
# '#CFCFCC', '#AABAC6', '#DCDEE0', '#EAE5E7', '#B7AB9F', '#F7EFE3', '#DED8CF', '#ABCA99', '#C5CD8F', '#959491',
# '#FFE481', '#C18E99', '#B07C86', '#9F6A73', '#8E5860', '#DEAD44', '#CD9B31', '#BC891E', '#AB770B', '#9A6500',
# '#778144', '#666F31', '#555D1E', '#444B0B', '#333900', '#67587B', '#564668', '#684563', '#573350', '#684550',
# '#57333D', '#46212A', '#350F17', '#240004',
# ]
# def rgb_to_hsv(rgb):
# rgb = rgb.clamp(0, 1)
# cmax, cmax_idx = rgb.max(dim=-1)
# cmin = rgb.min(dim=-1).values
# diff = cmax - cmin
# h = torch.zeros_like(cmax)
# h[cmax_idx == 0] = (((rgb[..., 1] - rgb[..., 2]) / diff) % 6)[cmax_idx == 0]
# h[cmax_idx == 1] = (((rgb[..., 2] - rgb[..., 0]) / diff) + 2)[cmax_idx == 1]
# h[cmax_idx == 2] = (((rgb[..., 0] - rgb[..., 1]) / diff) + 4)[cmax_idx == 2]
# h[diff == 0] = 0 # If cmax == cmin
# h = h / 6
# s = torch.zeros_like(cmax)
# s[cmax != 0] = (diff / cmax)[cmax != 0]
# v = cmax
# return torch.stack([h, s, v], dim=-1)
# def hsv_to_rgb(hsv):
# h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2]
# c = v * s
# x = c * (1 - torch.abs((h * 6) % 2 - 1))
# m = v - c
# rgb = torch.zeros_like(hsv)
# mask = (h < 1/6)
# rgb[mask] = torch.stack([c[mask], x[mask], torch.zeros_like(x[mask])], dim=-1)
# mask = (1/6 <= h) & (h < 2/6)
# rgb[mask] = torch.stack([x[mask], c[mask], torch.zeros_like(x[mask])], dim=-1)
# mask = (2/6 <= h) & (h < 3/6)
# rgb[mask] = torch.stack([torch.zeros_like(x[mask]), c[mask], x[mask]], dim=-1)
# mask = (3/6 <= h) & (h < 4/6)
# rgb[mask] = torch.stack([torch.zeros_like(x[mask]), x[mask], c[mask]], dim=-1)
# mask = (4/6 <= h) & (h < 5/6)
# rgb[mask] = torch.stack([x[mask], torch.zeros_like(x[mask]), c[mask]], dim=-1)
# mask = (5/6 <= h)
# rgb[mask] = torch.stack([c[mask], torch.zeros_like(x[mask]), x[mask]], dim=-1)
# return rgb + m.unsqueeze(-1)
# def interpolate_colors(colors, n_colors):
# # Convert colors to RGB tensor
# rgb_colors = torch.tensor([mcolors.to_rgb(color) for color in colors])
# # Convert RGB to HSV
# hsv_colors = rgb_to_hsv(rgb_colors)
# # Sort by hue
# sorted_indices = torch.argsort(hsv_colors[:, 0])
# sorted_hsv_colors = hsv_colors[sorted_indices]
# # Create interpolation indices
# indices = torch.linspace(0, len(sorted_hsv_colors) - 1, n_colors)
# # Perform interpolation
# interpolated_hsv = torch.stack([
# torch.lerp(sorted_hsv_colors[int(i)],
# sorted_hsv_colors[min(int(i) + 1, len(sorted_hsv_colors) - 1)],
# i - int(i))
# for i in indices
# ])
# # Convert interpolated result back to RGB
# interpolated_rgb = hsv_to_rgb(interpolated_hsv)
# return interpolated_rgb
# def project_to_morandi(features, morandi_colors):
# features_flat = features.reshape(-1, 3)
# distances = torch.cdist(features_flat, morandi_colors)
# # Get the indices of the closest colors
# closest_color_indices = torch.argmin(distances, dim=1)
# # Use the closest Morandi colors directly
# features_morandi = morandi_colors[closest_color_indices]
# features_morandi = features_morandi.reshape(features.shape)
# return features_morandi
# def smooth_color_transform(features, morandi_colors, smoothness=0.1):
# features_flat = features.reshape(-1, 3)
# distances = torch.cdist(features_flat, morandi_colors)
# # Calculate weights
# weights = torch.exp(-distances / smoothness)
# weights = weights / weights.sum(dim=1, keepdim=True)
# # Weighted average
# features_morandi = torch.matmul(weights, morandi_colors)
# features_morandi = features_morandi.reshape(features.shape)
# return features_morandi
# def histogram_matching(source, template):
# """
# Match the histogram of the source tensor to that of the template tensor.
# :param source: Source tensor with shape [B, H, W, 3]
# :param template: Template tensor with shape [N, 3], where N is the number of colors
# :return: Source tensor after histogram matching
# """
# def match_cumulative_cdf(source, template):
# src_values, src_indices, src_counts = torch.unique(source, return_inverse=True, return_counts=True)
# tmpl_values, tmpl_counts = torch.unique(template, return_counts=True)
# src_quantiles = torch.cumsum(src_counts.float(), 0) / source.numel()
# tmpl_quantiles = torch.cumsum(tmpl_counts.float(), 0) / template.numel()
# idx = torch.searchsorted(tmpl_quantiles, src_quantiles)
# idx = torch.clamp(idx, 1, len(tmpl_quantiles)-1)
# slope = (tmpl_values[idx] - tmpl_values[idx-1]) / (tmpl_quantiles[idx] - tmpl_quantiles[idx-1])
# interp_a_values = torch.lerp(tmpl_values[idx-1], tmpl_values[idx],
# (src_quantiles - tmpl_quantiles[idx-1]) * slope)
# return interp_a_values[src_indices].reshape(source.shape)
# matched = torch.stack([match_cumulative_cdf(source[..., i], template[:, i]) for i in range(3)], dim=-1)
# return matched
# def process_features(features):
# device = features.device
# n_colors = 1024
# morandi_colors_tensor = interpolate_colors(morandi_colors, n_colors).to(device)
# # morandi_colors_tensor = torch.tensor([mcolors.to_rgb(color) for color in morandi_colors]).to(device)
# # features_morandi = project_to_morandi(features, morandi_colors_tensor)
# # features_morandi = histogram_matching(features, morandi_colors_tensor)
# features_morandi = smooth_color_transform(features, morandi_colors_tensor, smoothness=0.05)
# return features_morandi.cpu().numpy()
# def visualizer(features, images, save_dir, dim=9, feat_type=None, file_name=None):
# import matplotlib
# matplotlib.use('Agg')
# import matplotlib.pyplot as plt
# import numpy as np
# import os
# assert features.dim() == 4, "Input tensor must have 4 dimensions (B, H, W, C)"
# B, H, W, C = features.size()
# # Ensure features have at least 3 channels for RGB visualization
# assert C >= 3, "Features must have at least 3 channels for RGB visualization"
# features = features[..., :3]
# # Normalize features to [0, 1] range
# features_min = features.min(dim=0, keepdim=True).values.min(dim=1, keepdim=True).values.min(dim=2, keepdim=True).values
# features_max = features.max(dim=0, keepdim=True).values.max(dim=1, keepdim=True).values.max(dim=2, keepdim=True).values
# features = (features - features_min) / (features_max - features_min)
# features_processed = process_features(features)
# # Create the directory structure
# vis_dir = os.path.join(save_dir, 'vis')
# if feat_type:
# feat_type_str = '-'.join(feat_type)
# vis_dir = os.path.join(vis_dir, feat_type_str)
# os.makedirs(vis_dir, exist_ok=True)
# # Save individual images for each feature map
# for i in range(B):
# if file_name is None:
# file_name = 'feat_morandi'
# save_path = os.path.join(vis_dir, f'{file_name}_{i}.png')
# # Convert to uint8 and save directly
# img = Image.fromarray((features_processed[i] * 255).astype(np.uint8))
# img.save(save_path)
# print(f"Feature maps have been saved in the directory: {vis_dir}")
# return vis_dir
def mv_visualizer(features, images, save_dir, dim=9, feat_type=None, file_name=None):
"""
Visualize features and corresponding images, and save the result. (For MASt3R decoder or head features)
"""
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import os
B, H, W, _ = features.size()
features = features[..., dim-9:]
# Normalize the 3-dimensional feature to range [0, 1]
features_min = features.min(dim=0, keepdim=True).values.min(dim=1, keepdim=True).values.min(dim=2, keepdim=True).values
features_max = features.max(dim=0, keepdim=True).values.max(dim=1, keepdim=True).values.max(dim=2, keepdim=True).values
features = (features - features_min) / (features_max - features_min)
rows = (B + 1) // 2 # Adjust rows for odd B
fig, axes = plt.subplots(rows, 8, figsize=(W*8*0.01, H*rows*0.01))
for i in range(B//2):
# Odd row: image and features
image = (images[2*i]['img'].squeeze(0).permute(1, 2, 0).numpy() + 1) / 2
axes[i, 0].imshow(image)
axes[i, 0].axis('off')
for j in range(3):
axes[i, j+1].imshow(features[2*i, :, :, j*3:(j+1)*3].cpu().numpy())
axes[i, j+1].axis('off')
# Even row: image and features
if 2*i + 1 < B:
image = (images[2*i + 1]['img'].squeeze(0).permute(1, 2, 0).numpy() + 1) / 2
axes[i, 4].imshow(image)
axes[i, 4].axis('off')
for j in range(3):
axes[i, j+5].imshow(features[2*i + 1, :, :, j*3:(j+1)*3].cpu().numpy())
axes[i, j+5].axis('off')
# Handle last row if B is odd
if B % 2 != 0:
image = (images[-1]['img'].squeeze(0).permute(1, 2, 0).numpy() + 1) / 2
axes[-1, 0].imshow(image)
axes[-1, 0].axis('off')
for j in range(3):
axes[-1, j+1].imshow(features[-1, :, :, j*3:(j+1)*3].cpu().numpy())
axes[-1, j+1].axis('off')
# Hide unused columns in last row
for j in range(4, 8):
axes[-1, j].axis('off')
plt.subplots_adjust(wspace=0.005, hspace=0.005, left=0.01, right=0.99, top=0.99, bottom=0.01)
# Save the plot
if file_name is None:
file_name = f'feat_dim{dim-9}-{dim}'
if feat_type:
feat_type_str = '-'.join(feat_type)
file_name = file_name + f'_{feat_type_str}'
save_path = os.path.join(save_dir, file_name + '.png')
plt.savefig(save_path, bbox_inches='tight', pad_inches=0)
plt.close()
return save_path
def adjust_norm(image: torch.Tensor) -> torch.Tensor:
inv_normalize = tvf.Normalize(
mean=[-1, -1, -1],
std=[1/0.5, 1/0.5, 1/0.5]
)
correct_normalize = tvf.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
image = inv_normalize(image)
image = correct_normalize(image)
return image
def adjust_midas_norm(image: torch.Tensor) -> torch.Tensor:
inv_normalize = tvf.Normalize(
mean=[-1, -1, -1],
std=[1/0.5, 1/0.5, 1/0.5]
)
correct_normalize = tvf.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]
)
image = inv_normalize(image)
image = correct_normalize(image)
return image
def adjust_clip_norm(image: torch.Tensor) -> torch.Tensor:
inv_normalize = tvf.Normalize(
mean=[-1, -1, -1],
std=[1/0.5, 1/0.5, 1/0.5]
)
correct_normalize = tvf.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711]
)
image = inv_normalize(image)
image = correct_normalize(image)
return image
class UnNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image):
image2 = torch.clone(image)
if len(image2.shape) == 4:
image2 = image2.permute(1, 0, 2, 3)
for t, m, s in zip(image2, self.mean, self.std):
t.mul_(s).add_(m)
return image2.permute(1, 0, 2, 3)
norm = tvf.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
unnorm = UnNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
midas_norm = tvf.Normalize([0.5] * 3, [0.5] * 3)
midas_unnorm = UnNormalize([0.5] * 3, [0.5] * 3)
def generate_iuv(B, H, W):
i_coords = torch.arange(B).view(B, 1, 1, 1).expand(B, H, W, 1).float() / (B - 1)
u_coords = torch.linspace(0, 1, W).view(1, 1, W, 1).expand(B, H, W, 1)
v_coords = torch.linspace(0, 1, H).view(1, H, 1, 1).expand(B, H, W, 1)
iuv_coords = torch.cat([i_coords, u_coords, v_coords], dim=-1)
return iuv_coords
class FeatureExtractor:
"""
Extracts and processes features from images using VFMs for per point(per pixel).
Supports multiple VFM features, dimensionality reduction, feature upsampling, and visualization.
Parameters:
images (list): List of image info.
method (str): Pointmap Init method, choose in ["dust3r", "mast3r"].
device (str): 'cuda'.
feat_type (list): VFM, choose in ["dust3r", "mast3r", "dift", "dino_b16", "dinov2_b14", "radio", "clip_b16", "mae_b16", "midas_l16", "sam_base", "iuvrgb"].
feat_dim (int): PCA dimensions.
img_base_path (str): Training view data directory path.
model_path (str): Model path, './submodules/mast3r/checkpoints/'.
vis_feat (bool): Visualize and save feature maps.
vis_key (str): Feature type to visualize(only for mast3r), choose in ["decfeat", "desc"].
focal_avg (bool): Use averaging focal.
"""
def __init__(self, images, args, method):
self.images = images
self.method = method
self.device = args.device
self.feat_type = args.feat_type
self.feat_dim = args.feat_dim
self.img_base_path = args.img_base_path
# self.use_featup = args.use_featup
self.model_path = args.model_path
self.vis_feat = args.vis_feat
self.vis_key = args.vis_key
self.focal_avg = args.focal_avg
def get_dust3r_feat(self, **kw):
model_path = os.path.join(self.model_path, "DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth")
model = AsymmetricCroCo3DStereo.from_pretrained(model_path).to(self.device)
output = inference(kw['pairs'], model, self.device, batch_size=1)
scene = global_aligner(output, device=self.device, mode=GlobalAlignerMode.PointCloudOptimizer)
if self.vis_key:
assert self.vis_key == 'decfeat', f"Expected vis_key to be 'decfeat', but got {self.vis_key}"
self.vis_decfeat(kw['pairs'], output=output)
# del model, output
# torch.cuda.empty_cache()
return scene.stacked_feat
def get_mast3r_feat(self, **kw):
model_path = os.path.join(self.model_path, "MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth")
model = AsymmetricMASt3R.from_pretrained(model_path).to(self.device)
cache_dir = os.path.join(self.img_base_path, "cache")
if os.path.exists(cache_dir):
os.system(f'rm -rf {cache_dir}')
scene = sparse_global_alignment(kw['train_img_list'], kw['pairs'], cache_dir,
model, lr1=0.07, niter1=500, lr2=0.014, niter2=200, device=self.device,
opt_depth='depth' in 'refine', shared_intrinsics=self.focal_avg,
matching_conf_thr=5.)
if self.vis_key:
assert self.vis_key in ['decfeat', 'desc'], f"Expected vis_key to be 'decfeat' or 'desc', but got {self.vis_key}"
self.vis_decfeat(kw['pairs'], model=model)
# del model
# torch.cuda.empty_cache()
return scene.stacked_feat
def get_feat(self, feat_type):
"""
Get features using Probe3D.
"""
cfg = OmegaConf.load(f"configs/backbone/{feat_type}.yaml")
model = instantiate(cfg.model, output="dense", return_multilayer=False)
model = model.to(self.device)
if 'midas' in feat_type:
image_norm = adjust_midas_norm(torch.cat([i['img'] for i in self.images])).to(self.device)
# elif 'clip' in self.feat_type:
# image_norm = adjust_clip_norm(torch.cat([i['img'] for i in self.images])).to(self.device)
else:
image_norm = adjust_norm(torch.cat([i['img'] for i in self.images])).to(self.device)
with torch.no_grad():
feats = model(image_norm).permute(0, 2, 3, 1)
# del model
# torch.cuda.empty_cache()
return feats
# def get_feat(self, feat_type):
# """
# Get features using FeatUp.
# """
# original_feat_type = feat_type
# use_norm = False if 'maskclip' in feat_type else True
# if 'featup' in original_feat_type:
# feat_type = feat_type.split('_featup')[0]
# # feat_upsampler = torch.hub.load("mhamilton723/FeatUp", feat_type, use_norm=use_norm).to(device)
# feat_upsampler = torch.hub.load("/home/chenyue/.cache/torch/hub/mhamilton723_FeatUp_main/", feat_type, use_norm=use_norm, source='local').to(self.device) ## offline
# image_norm = adjust_norm(torch.cat([i['img'] for i in self.images])).to(self.device)
# image_norm = F.interpolate(image_norm, size=(224, 224), mode='bilinear', align_corners=False)
# if 'featup' in original_feat_type:
# feats = feat_upsampler(image_norm).permute(0, 2, 3, 1)
# else:
# feats = feat_upsampler.model(image_norm).permute(0, 2, 3, 1)
# return feats
def get_iuvrgb(self):
rgb = torch.cat([i['img'] for i in self.images]).permute(0, 2, 3, 1).to(self.device)
feats = torch.cat([generate_iuv(*rgb.shape[:-1]).to(self.device), rgb], dim=-1)
return feats
def get_iuv(self):
rgb = torch.cat([i['img'] for i in self.images]).permute(0, 2, 3, 1).to(self.device)
feats = generate_iuv(*rgb.shape[:-1]).to(self.device)
return feats
def preprocess(self, feature, feat_dim, vis_feat=False, is_upsample=True):
"""
Preprocess features by applying PCA, upsampling, and optionally visualizing.
"""
if feat_dim:
feature = pca(feature, feat_dim)
# else:
# feature_min = feature.min(dim=0, keepdim=True).values.min(dim=1, keepdim=True).values
# feature_max = feature.max(dim=0, keepdim=True).values.max(dim=1, keepdim=True).values
# feature = (feature - feature_min) / (feature_max - feature_min + 1e-6)
# feature = feature - feature.mean(dim=[0,1,2], keepdim=True)
torch.cuda.empty_cache()
if (feature[0].shape[0:-1] != self.images[0]['true_shape'][0]).all() and is_upsample:
feature = upsampler(feature, *[s for s in self.images[0]['true_shape'][0]])
print(f"Feature map size >>> height: {feature[0].shape[0]}, width: {feature[0].shape[1]}, channels: {feature[0].shape[2]}")
if vis_feat:
save_path = visualizer(feature, self.images, self.img_base_path, feat_type=self.feat_type)
print(f"The encoder feature visualization has been saved at >>>>> {save_path}")
return feature
def vis_decfeat(self, pairs, **kw):
"""
Visualize decoder or head(only for mast3r) features.
"""
if 'output' in kw:
output = kw['output']
else:
output = inference(pairs, kw['model'], self.device, batch_size=1, verbose=False)
decfeat1 = output['pred1'][self.vis_key].detach()
decfeat2 = output['pred2'][self.vis_key].detach()
# decfeat1 = pca(decfeat1, 9)
# decfeat2 = pca(decfeat2, 9)
decfeat = torch.stack([decfeat1, decfeat2], dim=1).view(-1, *decfeat1.shape[1:])
decfeat = torch.cat(torch.chunk(decfeat,2)[::-1], dim=0)
decfeat = pca(decfeat, 9)
if (decfeat.shape[1:-1] != self.images[0]['true_shape'][0]).all():
decfeat = upsampler(decfeat, *[s for s in self.images[0]['true_shape'][0]])
pair_images = [im for p in pairs[3:] + pairs[:3] for im in p]
save_path = mv_visualizer(decfeat, pair_images, self.img_base_path,
feat_type=self.feat_type, file_name=f'{self.vis_key}_pcaall_dim0-9')
print(f"The decoder feature visualization has been saved at >>>>> {save_path}")
def forward(self, **kw):
feat_dim = self.feat_dim
vis_feat = self.vis_feat and len(self.feat_type) == 1
is_upsample = len(self.feat_type) == 1
all_feats = {}
for feat_type in self.feat_type:
if feat_type == self.method:
feats = kw['scene'].stacked_feat
elif feat_type in ['dust3r', 'mast3r']:
feats = getattr(self, f"get_{feat_type}_feat")(**kw)
elif feat_type in ['iuv', 'iuvrgb']:
feats = getattr(self, f"get_{feat_type}")()
feat_dim = None
else:
feats = self.get_feat(feat_type)
# feats = to_numpy(self.preprocess(feats))
all_feats[feat_type] = self.preprocess(feats.detach().clone(), feat_dim, vis_feat, is_upsample)
if len(self.feat_type) > 1:
all_feats = {k: (v - v.min()) / (v.max() - v.min()) for k, v in all_feats.items()}
target_size = tuple(s // 16 for s in self.images[0]['true_shape'][0][:2])
tmp_feats = []
kickoff = []
for k, v in all_feats.items():
if k in ['iuv', 'iuvrgb']:
# self.feat_dim -= v.shape[-1]
kickoff.append(v)
else:
if v.shape[1:3] != target_size:
v = F.interpolate(v.permute(0, 3, 1, 2), size=target_size,
mode='bilinear', align_corners=False).permute(0, 2, 3, 1)
tmp_feats.append(v)
feats = self.preprocess(torch.cat(tmp_feats, dim=-1), self.feat_dim, self.vis_feat and not kickoff)
if kickoff:
feats = torch.cat([feats] + kickoff, dim=-1)
feats = self.preprocess(feats, self.feat_dim, self.vis_feat, is_upsample=False)
else:
feats = all_feats[self.feat_type[0]]
torch.cuda.empty_cache()
return to_numpy(feats)
def __call__(self, **kw):
return self.forward(**kw)
class InitMethod:
"""
Initialize pointmap and camera param via DUSt3R or MASt3R.
"""
def __init__(self, args):
self.method = args.method
self.n_views = args.n_views
self.device = args.device
self.img_base_path = args.img_base_path
self.focal_avg = args.focal_avg
self.tsdf_thresh = args.tsdf_thresh
self.min_conf_thr = args.min_conf_thr
if self.method == 'dust3r':
self.model_path = os.path.join(args.model_path, "DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth")
else:
self.model_path = os.path.join(args.model_path, "MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth")
def get_dust3r(self):
return AsymmetricCroCo3DStereo.from_pretrained(self.model_path).to(self.device)
def get_mast3r(self):
return AsymmetricMASt3R.from_pretrained(self.model_path).to(self.device)
def infer_dust3r(self, **kw):
output = inference(kw['pairs'], kw['model'], self.device, batch_size=1)
scene = global_aligner(output, device=self.device, mode=GlobalAlignerMode.PointCloudOptimizer)
loss = compute_global_alignment(scene=scene, init="mst", niter=300, schedule='linear', lr=0.01,
focal_avg=self.focal_avg, known_focal=kw.get('known_focal', None))
scene = scene.clean_pointcloud()
return scene
def infer_mast3r(self, **kw):
cache_dir = os.path.join(self.img_base_path, "cache")
if os.path.exists(cache_dir):
os.system(f'rm -rf {cache_dir}')
scene = sparse_global_alignment(kw['train_img_list'], kw['pairs'], cache_dir,
kw['model'], lr1=0.07, niter1=500, lr2=0.014, niter2=200, device=self.device,
opt_depth='depth' in 'refine', shared_intrinsics=self.focal_avg,
matching_conf_thr=5.)
return scene
def get_dust3r_info(self, scene):
imgs = to_numpy(scene.imgs)
focals = scene.get_focals()
poses = to_numpy(scene.get_im_poses())
pts3d = to_numpy(scene.get_pts3d())
# pts3d = to_numpy(scene.get_planes3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(1.0)))
confidence_masks = to_numpy(scene.get_masks())
intrinsics = to_numpy(scene.get_intrinsics())
return imgs, focals, poses, intrinsics, pts3d, confidence_masks
def get_mast3r_info(self, scene):
imgs = to_numpy(scene.imgs)
focals = scene.get_focals()[:,None]
poses = to_numpy(scene.get_im_poses())
intrinsics = to_numpy(scene.intrinsics)
tsdf = TSDFPostProcess(scene, TSDF_thresh=self.tsdf_thresh)
pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=True))
pts3d = [arr.reshape((*imgs[0].shape[:2], 3)) for arr in pts3d]
confidence_masks = np.array(to_numpy([c > self.min_conf_thr for c in confs]))
return imgs, focals, poses, intrinsics, pts3d, confidence_masks
def get_dust3r_depth(self, scene):
return to_numpy(scene.get_depthmaps())
def get_mast3r_depth(self, scene):
imgs = to_numpy(scene.imgs)
tsdf = TSDFPostProcess(scene, TSDF_thresh=self.tsdf_thresh)
_, depthmaps, _ = to_numpy(tsdf.get_dense_pts3d(clean_depth=True))
depthmaps = [arr.reshape((*imgs[0].shape[:2], 3)) for arr in depthmaps]
return depthmaps
def get_model(self):
return getattr(self, f"get_{self.method}")()
def infer(self, **kw):
return getattr(self, f"infer_{self.method}")(**kw)
def get_info(self, scene):
return getattr(self, f"get_{self.method}_info")(scene)
def get_depth(self, scene):
return getattr(self, f"get_{self.method}_depth")(scene)
|