import math
import random
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
    BaseModelOutput,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.modeling_bart import (
    BartDecoder,
    BartEncoderLayer,
    BartForConditionalGeneration,
    BartLearnedPositionalEmbedding,
    BartModel,
    BartPretrainedModel,
    _expand_mask,
    shift_tokens_right,
)
from transformers.utils import logging

from .modeling_outputs import EnClapBartOutput

logger = logging.get_logger(__name__)


class EnClapBartConfig(BartConfig):
    def __init__(
        self,
        d_clap: int = 512,
        num_rvq: int = 16,
        encodec_vocab_size: int = 1024,
        encodec_pad_token_id: int = 1024,
        mcm_loss_scale: float = 0.7,
        label_smoothing: float = 0.2,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.d_clap = d_clap
        self.num_rvq = num_rvq
        self.encodec_vocab_size = encodec_vocab_size
        self.encodec_pad_token_id = encodec_pad_token_id
        self.mcm_loss_scale = mcm_loss_scale
        self.label_smoothing = label_smoothing


class EnClapBartEncoder(BartPretrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    [`BartEncoderLayer`].

    Args:
        config: BartConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(
        self, config: EnClapBartConfig, embed_tokens: Optional[nn.Embedding] = None
    ):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        clap_dim = config.d_clap
        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.embed_encodec = nn.ModuleList(
            [
                nn.Embedding(
                    math.ceil((config.encodec_vocab_size + 1) / 64) * 64,
                    config.d_model,
                    padding_idx=config.encodec_pad_token_id,
                )
                for _ in range(config.num_rvq)
            ]
        )

        self.clap_projection = nn.Linear(clap_dim, embed_dim)

        self.embed_positions = BartLearnedPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
        )
        self.layers = nn.ModuleList(
            [BartEncoderLayer(config) for _ in range(config.encoder_layers)]
        )
        self.layernorm_embedding = nn.LayerNorm(embed_dim)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        clap_embedding: Optional[torch.Tensor] = None,
        encodec_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            if input_ids.ndim == 2:  # This is effectively just input = input_ids
                input = input_ids
                input_ids = input_ids.view(-1, input_ids.shape[-1])
        elif inputs_embeds is not None:
            input = inputs_embeds[:, :, -1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            if input_ids.ndim == 2:
                inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
            elif input_ids.ndim == 3:
                encodec_ids = torch.where(encodec_mask.unsqueeze(-1) > 0, input_ids, 0)
                encodec_embeds = torch.zeros(
                    input_ids.shape[0], input_ids.shape[1], self.config.d_model
                ).to(self.device)
                for i, embed in enumerate(self.embed_encodec):
                    encodec_embeds = encodec_embeds + embed(encodec_ids[..., i])
                bart_ids = torch.where(encodec_mask == 0, input_ids[..., 0], 0)
                bart_embeds = self.embed_tokens(bart_ids)
                input_embeds = torch.where(
                    encodec_mask.unsqueeze(-1) > 0, encodec_embeds, bart_embeds
                )

                # Get CLAP embedding
                if clap_embedding is not None:
                    clap_embedding = self.clap_projection(clap_embedding)
                    input_embeds[:, 0] = clap_embedding
                    inputs_embeds = input_embeds.to(self.device)

        batch_size = input_ids.size(0)
        embed_pos = self.embed_positions(input_ids).to(self.device)
        embed_pos = torch.cat(
            [
                torch.zeros(batch_size, 1, self.config.d_model).to(self.device),
                embed_pos[:, :-1],
            ],
            dim=1,
        )

        hidden_states = inputs_embeds + embed_pos
        hidden_states = self.layernorm_embedding(hidden_states)
        hidden_states = nn.functional.dropout(
            hidden_states, p=self.dropout, training=self.training
        )

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.size()[0] != (len(self.layers)):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
                )

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (
                dropout_probability < self.layerdrop
            ):  # skip the layer
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:

                    def create_custom_forward(module):
                        def custom_forward(*inputs):
                            return module(*inputs, output_attentions)

                        return custom_forward

                    layer_outputs = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(encoder_layer),
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(
                            head_mask[idx] if head_mask is not None else None
                        ),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, encoder_states, all_attentions]
                if v is not None
            )
        return BaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_states,
            attentions=all_attentions,
        )


class EnClapBartModel(BartModel):
    def __init__(self, config: EnClapBartConfig):
        super(BartModel, self).__init__(config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = EnClapBartEncoder(config, self.shared)
        self.decoder = BartDecoder(config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        clap_embedding: Optional[torch.Tensor] = None,
        encodec_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqModelOutput]:
        # different to other models, Bart automatically creates decoder_input_ids from
        # input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            if input_ids is None:
                raise ValueError(
                    "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                    "passed, `input_ids` cannot be `None`. Please pass either "
                    "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
                )

            decoder_input_ids = shift_tokens_right(
                input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
            )

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                clap_embedding=clap_embedding,
                encodec_mask=encodec_mask,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


class EnClapBartForConditionalGeneration(BartForConditionalGeneration):
    config_class = EnClapBartConfig

    def __init__(self, config: EnClapBartConfig):
        super(BartForConditionalGeneration, self).__init__(config)
        self.model = EnClapBartModel(config)
        self.register_buffer(
            "final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))
        )
        self.lm_head = nn.Linear(
            config.d_model, self.model.shared.num_embeddings, bias=False
        )
        self.mcm_heads = nn.ModuleList(
            [
                nn.Linear(config.d_model, config.encodec_vocab_size)
                for _ in range(config.num_rvq)
            ]
        )

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        clap_embedding: Optional[torch.Tensor] = None,
        encodec_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        mcm_labels: Optional[List[torch.LongTensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if labels is not None:
            if use_cache:
                logger.warning(
                    "The `use_cache` argument is changed to `False` since `labels` is provided."
                )
            use_cache = False
            if decoder_input_ids is None and decoder_inputs_embeds is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            clap_embedding=clap_embedding,
            encodec_mask=encodec_mask,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        mcm_loss = None
        if mcm_labels is not None:
            mcm_loss = 0.0
            loss_fct = CrossEntropyLoss()
            for i, mcm_head in enumerate(self.mcm_heads):
                mcm_logits = mcm_head(outputs.encoder_last_hidden_state)
                loss_scale = 1 / 2 ** (i + 1)
                loss = loss_fct(
                    mcm_logits.view(-1, self.config.encodec_vocab_size),
                    mcm_labels[..., i].reshape(-1),
                )
                mcm_loss = mcm_loss + loss * loss_scale

        lm_logits = self.lm_head(outputs[0])
        lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)

        masked_lm_loss = None
        if labels is not None:
            labels = labels.to(lm_logits.device)
            loss_fct = CrossEntropyLoss(label_smoothing=self.config.label_smoothing)
            masked_lm_loss = loss_fct(
                lm_logits.view(-1, self.config.vocab_size), labels.view(-1)
            )

        loss = None
        if mcm_loss is None:
            loss = masked_lm_loss
        elif masked_lm_loss is None:
            loss = mcm_loss
        else:
            mcm_loss = mcm_loss * self.config.mcm_loss_scale
            loss = masked_lm_loss + mcm_loss

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return (
                ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
            )

        return EnClapBartOutput(
            loss=loss,
            lm_loss=masked_lm_loss,
            mcm_loss=mcm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )