import streamlit as st from tensorflow.keras import layers, Model import tensorflow as tf from deep_translator import GoogleTranslator from tensorflow.keras.models import load_model from rembg import remove import numpy as np import warnings warnings.filterwarnings("ignore") from PIL import Image from tensorflow.keras.utils import get_custom_objects import os from keras import backend as K from keras.saving import register_keras_serializable from deskew import determine_skew import cv2 import torch from diffusers import StableDiffusionImg2ImgPipeline from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, pipeline from datasets import load_dataset from peft import LoraConfig from trl import SFTTrainer from transformers import pipeline from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, pipeline, logging, ) promt = None i_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to('cpu') torch.cuda.empty_cache() base_model = "meta-llama/Llama-3.2-1B" # https://huggingface.co/meta-llama/Llama-3.2-1B hf_dataset = "ahmeterdempmk/Llama-E-Commerce-Fine-Tune-Data" # https://huggingface.co/ahmeterdempmk/Llama-E-Commerce-Fine-Tune-Data dataset = load_dataset(hf_dataset, split="train") model = AutoModelForCausalLM.from_pretrained ( base_model, device_map={"": 0} ) model.config.use_cache = False model.config.pretraining_tp = 1 model.low_cpu_mem_usage=True tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" peft_params = LoraConfig ( lora_alpha=16, # the scaling factor for the low-rank matrices lora_dropout=0.1, # the dropout probability of the LoRA layers r=64, # the dimension of the low-rank matrices bias="none", task_type="CAUSAL_LM", # the task to train for (sequence-to-sequence language modeling in this case) ) training_params = TrainingArguments ( output_dir="./LlamaResults", num_train_epochs=5, # One training epoch. per_device_train_batch_size=4, # Batch size per GPU for training. gradient_accumulation_steps=1, # This refers to the number of steps required to accumulate the gradients during the update process. optim="paged_adamw_32bit", # Model optimizer (AdamW optimizer). save_steps=25, logging_steps=25, learning_rate=2e-4, # Initial learning rate. (Llama 3.1 8B ile hesaplandı) weight_decay=0.001, # Weight decay is applied to all layers except bias/LayerNorm weights. fp16=False, # Disable fp16/bf16 training. bf16=False, # Disable fp16/bf16 training. max_grad_norm=0.3, # Gradient clipping. max_steps=-1, warmup_ratio=0.03, group_by_length=True, lr_scheduler_type="constant", report_to="tensorboard" ) trainer = SFTTrainer( model=model, train_dataset=dataset, peft_config=peft_params, dataset_text_field="input", max_seq_length=None, tokenizer=tokenizer, args=training_params, packing=False, ) train_output = trainer.train() torch.cuda.empty_cache() languages = { "Türkçe": "tr", "Azərbaycan dili": "az", "Deutsch": "de", "English": "en", "Français": "fr", "Español": "es", "Italiano": "it", "Nederlands": "nl", "Português": "pt", "Русский": "ru", "中文": "zh", "日本語": "ja", "한국어": "ko", "عربي": "ar", "हिन्दी": "hi", "ภาษาไทย": "th", "Tiếng Việt": "vi", "فارسی": "fa", "Svenska": "sv", "Norsk": "no", "Dansk": "da", "Čeština": "cs", "Ελληνικά": "el", "Bosanski": "bs", "Hrvatski": "hr", "Shqip": "sq", "Slovenčina": "sk", "Slovenščina": "sl", "Türkmençe": "tk", "български" : "bg", "Кыргызча": "ky", "Қазақша": "kk", "Монгол": "mn", "Українська": "uk", "Cymraeg": "cy", "Tatarça": "tt", "Kiswahili": "sw", "Hausa": "ha", "አማርኛ": "am", "Èdè Yorùbá": "yo", "isiZulu": "zu", "chiShona": "sn", "isiXhosa": "xh" } tr_list = ["Lyra AI E-commerce Hackathon Project", "Select Model Sharpness", "Your Product", "Your Explanation About Your Product", "Generate", "Generated Image"] tr_list_tr = [] @register_keras_serializable(package='Custom', name='mse') def custom_mse(y_true, y_pred): return K.mean(K.square(y_true - y_pred)) class STN(layers.Layer): def __init__(self, **kwargs): super(STN, self).__init__(**kwargs) def build(self, input_shape): self.localization = tf.keras.Sequential([ layers.Conv2D(16, (7, 7), activation='relu', input_shape=input_shape[1:]), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(32, (5, 5), activation='relu'), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dense(50, activation='relu'), layers.Dense(6, activation='linear') ]) def call(self, inputs): theta = self.localization(inputs) theta = tf.reshape(theta, [-1, 2, 3]) grid = self.get_grid(tf.shape(inputs), theta) return self.sampler(inputs, grid) def get_grid(self, input_shape, theta): batch_size, height, width = input_shape[0], input_shape[1], input_shape[2] x_coords = tf.linspace(-1.0, 1.0, width) y_coords = tf.linspace(-1.0, 1.0, height) x_grid, y_grid = tf.meshgrid(x_coords, y_coords) ones = tf.ones_like(x_grid) grid = tf.stack([x_grid, y_grid, ones], axis=-1) grid = tf.reshape(grid, [1, height * width, 3]) grid = tf.tile(grid, [batch_size, 1, 1]) grid = tf.matmul(grid, tf.transpose(theta, [0, 2, 1])) return grid def sampler(self, inputs, grid): shape = tf.shape(inputs) batch_size = shape[0] height = shape[1] width = shape[2] channels = shape[3] resized_inputs = tf.image.resize(inputs, size=(height, width)) return resized_inputs get_custom_objects().update({'STN': STN}) ###!!!Functions Should Be Here!!!### def process_image(input_img): input_img=input_img.resize((224,224)) input_img=np.array(input_img) input_img=input_img/255.0 input_img=np.expand_dims(input_img,axis=0) return input_img def blur_level(image): if isinstance(image, Image.Image): image = np.array(image) gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) laplacian = cv2.Laplacian(gray_image, cv2.CV_64F) variance = laplacian.var() return variance image_model = load_model("autoencoder.h5", custom_objects={'mse': custom_mse}) torch.cuda.empty_cache() language = st.selectbox("Select Language", list(languages.keys())) if language: translator = GoogleTranslator(source='auto', target=languages[language]) tr_list_tr = [translator.translate(text) for text in tr_list] st.title(tr_list_tr[0]) threshold = st.slider(tr_list_tr[1], min_value = 50, max_value = 100, value = 75) threshold=threshold*3 img = st.camera_input(tr_list_tr[2]) text = st.text_input(tr_list_tr[3]) if st.button(tr_list[4]): if img and text is not None: img=Image.open(img) img1=remove(img) if img1.mode == 'RGBA': img1 = img1.convert('RGB') input_img = process_image(img1) torch.cuda.empty_cache() prediction = image_model.predict(input_img) pred_img = np.clip(prediction[0], 0, 1) * 255 pred_img = Image.fromarray(pred_img.astype('uint8')) level = blur_level(pred_img) #st.write(level, threshold) prompt = f""" You are extracting product title and description from given text and rewriting the description and enhancing it when necessary. Always give response in the user's input language. Always answer in the given json format. Do not use any other keywords. Do not make up anything. Explanations should contain at least three sentences each. Json Format: {{ "title": "