File size: 10,078 Bytes
c6729a1 eeb6c8d c6729a1 eeb6c8d c6729a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import streamlit as st
from tensorflow.keras import layers, Model
import tensorflow as tf
from deep_translator import GoogleTranslator
from tensorflow.keras.models import load_model
from rembg import remove
import numpy as np
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
from tensorflow.keras.utils import get_custom_objects
import os
from keras import backend as K
from keras.saving import register_keras_serializable
from deskew import determine_skew
import cv2
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, pipeline
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer
from transformers import pipeline
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
pipeline,
logging,
)
promt = None
i_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to('cpu')
torch.cuda.empty_cache()
base_model = "meta-llama/Llama-3.2-1B" # https://huggingface.co/meta-llama/Llama-3.2-1B
hf_dataset = "ahmeterdempmk/Llama-E-Commerce-Fine-Tune-Data" # https://huggingface.co/ahmeterdempmk/Llama-E-Commerce-Fine-Tune-Data
dataset = load_dataset(hf_dataset, split="train")
model = AutoModelForCausalLM.from_pretrained (
base_model,
device_map={"": 0}
)
model.config.use_cache = False
model.config.pretraining_tp = 1
model.low_cpu_mem_usage=True
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
peft_params = LoraConfig (
lora_alpha=16, # the scaling factor for the low-rank matrices
lora_dropout=0.1, # the dropout probability of the LoRA layers
r=64, # the dimension of the low-rank matrices
bias="none",
task_type="CAUSAL_LM", # the task to train for (sequence-to-sequence language modeling in this case)
)
training_params = TrainingArguments (
output_dir="./LlamaResults",
num_train_epochs=5, # One training epoch.
per_device_train_batch_size=4, # Batch size per GPU for training.
gradient_accumulation_steps=1, # This refers to the number of steps required to accumulate the gradients during the update process.
optim="paged_adamw_32bit", # Model optimizer (AdamW optimizer).
save_steps=25,
logging_steps=25,
learning_rate=2e-4, # Initial learning rate. (Llama 3.1 8B ile hesaplandı)
weight_decay=0.001, # Weight decay is applied to all layers except bias/LayerNorm weights.
fp16=False, # Disable fp16/bf16 training.
bf16=False, # Disable fp16/bf16 training.
max_grad_norm=0.3, # Gradient clipping.
max_steps=-1,
warmup_ratio=0.03,
group_by_length=True,
lr_scheduler_type="constant",
report_to="tensorboard"
)
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
peft_config=peft_params,
dataset_text_field="input",
max_seq_length=None,
tokenizer=tokenizer,
args=training_params,
packing=False,
)
train_output = trainer.train()
torch.cuda.empty_cache()
languages = {
"Türkçe": "tr",
"Azərbaycan dili": "az",
"Deutsch": "de",
"English": "en",
"Français": "fr",
"Español": "es",
"Italiano": "it",
"Nederlands": "nl",
"Português": "pt",
"Русский": "ru",
"中文": "zh",
"日本語": "ja",
"한국어": "ko",
"عربي": "ar",
"हिन्दी": "hi",
"ภาษาไทย": "th",
"Tiếng Việt": "vi",
"فارسی": "fa",
"Svenska": "sv",
"Norsk": "no",
"Dansk": "da",
"Čeština": "cs",
"Ελληνικά": "el",
"Bosanski": "bs",
"Hrvatski": "hr",
"Shqip": "sq",
"Slovenčina": "sk",
"Slovenščina": "sl",
"Türkmençe": "tk",
"български" : "bg",
"Кыргызча": "ky",
"Қазақша": "kk",
"Монгол": "mn",
"Українська": "uk",
"Cymraeg": "cy",
"Tatarça": "tt",
"Kiswahili": "sw",
"Hausa": "ha",
"አማርኛ": "am",
"Èdè Yorùbá": "yo",
"isiZulu": "zu",
"chiShona": "sn",
"isiXhosa": "xh"
}
tr_list = ["Lyra AI E-commerce Hackathon Project", "Select Model Sharpness", "Your Product", "Your Explanation About Your Product", "Generate", "Generated Image"]
tr_list_tr = []
@register_keras_serializable(package='Custom', name='mse')
def custom_mse(y_true, y_pred):
return K.mean(K.square(y_true - y_pred))
class STN(layers.Layer):
def __init__(self, **kwargs):
super(STN, self).__init__(**kwargs)
def build(self, input_shape):
self.localization = tf.keras.Sequential([
layers.Conv2D(16, (7, 7), activation='relu', input_shape=input_shape[1:]),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(32, (5, 5), activation='relu'),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dense(50, activation='relu'),
layers.Dense(6, activation='linear')
])
def call(self, inputs):
theta = self.localization(inputs)
theta = tf.reshape(theta, [-1, 2, 3])
grid = self.get_grid(tf.shape(inputs), theta)
return self.sampler(inputs, grid)
def get_grid(self, input_shape, theta):
batch_size, height, width = input_shape[0], input_shape[1], input_shape[2]
x_coords = tf.linspace(-1.0, 1.0, width)
y_coords = tf.linspace(-1.0, 1.0, height)
x_grid, y_grid = tf.meshgrid(x_coords, y_coords)
ones = tf.ones_like(x_grid)
grid = tf.stack([x_grid, y_grid, ones], axis=-1)
grid = tf.reshape(grid, [1, height * width, 3])
grid = tf.tile(grid, [batch_size, 1, 1])
grid = tf.matmul(grid, tf.transpose(theta, [0, 2, 1]))
return grid
def sampler(self, inputs, grid):
shape = tf.shape(inputs)
batch_size = shape[0]
height = shape[1]
width = shape[2]
channels = shape[3]
resized_inputs = tf.image.resize(inputs, size=(height, width))
return resized_inputs
get_custom_objects().update({'STN': STN})
###!!!Functions Should Be Here!!!###
def process_image(input_img):
input_img=input_img.resize((224,224))
input_img=np.array(input_img)
input_img=input_img/255.0
input_img=np.expand_dims(input_img,axis=0)
return input_img
def blur_level(image):
if isinstance(image, Image.Image):
image = np.array(image)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
laplacian = cv2.Laplacian(gray_image, cv2.CV_64F)
variance = laplacian.var()
return variance
image_model = load_model("autoencoder.h5", custom_objects={'mse': custom_mse})
torch.cuda.empty_cache()
language = st.selectbox("Select Language", list(languages.keys()))
if language:
translator = GoogleTranslator(source='auto', target=languages[language])
tr_list_tr = [translator.translate(text) for text in tr_list]
st.title(tr_list_tr[0])
threshold = st.slider(tr_list_tr[1], min_value = 50, max_value = 100, value = 75)
threshold=threshold*3
img = st.camera_input(tr_list_tr[2])
text = st.text_input(tr_list_tr[3])
if st.button(tr_list[4]):
if img and text is not None:
img=Image.open(img)
img1=remove(img)
if img1.mode == 'RGBA':
img1 = img1.convert('RGB')
input_img = process_image(img1)
torch.cuda.empty_cache()
prediction = image_model.predict(input_img)
pred_img = np.clip(prediction[0], 0, 1) * 255
pred_img = Image.fromarray(pred_img.astype('uint8'))
level = blur_level(pred_img)
#st.write(level, threshold)
prompt = f"""
You are extracting product title and description from given text and rewriting the description and enhancing it when necessary.
Always give response in the user's input language.
Always answer in the given json format. Do not use any other keywords. Do not make up anything.
Explanations should contain at least three sentences each.
Json Format:
{{
"title": "<title of the product>",
"description": "<description of the product>"
}}
Examples:
Product Information: Rosehip Marmalade, keep it cold
Answer: {{"title": "Rosehip Marmalade", "description": "You should store this delicisious roseship marmelade in cold conditions. You can use it in your breakfasts and meals."}}
Product Information: Blackberry jam spoils in the heat
Answer: {{"title": "Blackberry Jam", "description": "Please store it in cold conditions. Recommended to be consumed at breakfast. Very sweet."}}
Now answer this:
Product Information: {text}"""
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=10000)
torch.cuda.empty_cache()
if level < threshold:
if img.mode == 'RGB':
img = img.convert('RGB')
init_image = img.thumbnail((768, 768))
i_prompt = "Remove the background from the image and correct the perspective of the subject to ensure a straight and clear view."
images = i_pipe(prompt=i_prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
images[0].save("output.png")
image = Image.open("./output.png")
st.image(image, caption=tr_list_tr[5], use_column_width=True)
result = pipe(f"Prompt: {prompt} \n Response:") # result = pipe(f"Prompt: {prompt} \n Response:")
generated_text = result[0]['generated_text']
st.write(generated_text)
else:
st.image(pred_img, caption=tr_list_tr[2], use_column_width=True)
result = pipe(f"Prompt: {prompt} \n Response:") # result = pipe(f"Prompt: {prompt} \n Response:")
generated_text = result[0]['generated_text']
st.write(generated_text) |