File size: 10,078 Bytes
c6729a1
 
 
eeb6c8d
c6729a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb6c8d
 
c6729a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import streamlit as st
from tensorflow.keras import layers, Model
import tensorflow as tf
from deep_translator import GoogleTranslator
from tensorflow.keras.models import load_model
from rembg import remove
import numpy as np
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
from tensorflow.keras.utils import get_custom_objects
import os
from keras import backend as K
from keras.saving import register_keras_serializable
from deskew import determine_skew
import cv2
import torch
from diffusers import StableDiffusionImg2ImgPipeline
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, pipeline
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer
from transformers import pipeline
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TrainingArguments,
    pipeline,
    logging,
)

promt = None

i_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to('cpu')
torch.cuda.empty_cache()


base_model = "meta-llama/Llama-3.2-1B" # https://huggingface.co/meta-llama/Llama-3.2-1B

hf_dataset = "ahmeterdempmk/Llama-E-Commerce-Fine-Tune-Data" # https://huggingface.co/ahmeterdempmk/Llama-E-Commerce-Fine-Tune-Data

dataset = load_dataset(hf_dataset, split="train")
model = AutoModelForCausalLM.from_pretrained (
    base_model,
    device_map={"": 0}
)
model.config.use_cache = False
model.config.pretraining_tp = 1
model.low_cpu_mem_usage=True
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
peft_params = LoraConfig (
    lora_alpha=16, # the scaling factor for the low-rank matrices
    lora_dropout=0.1, # the dropout probability of the LoRA layers
    r=64, # the dimension of the low-rank matrices
    bias="none",
    task_type="CAUSAL_LM", # the task to train for (sequence-to-sequence language modeling in this case)
)
training_params = TrainingArguments (
    output_dir="./LlamaResults",
    num_train_epochs=5, # One training epoch.
    per_device_train_batch_size=4, # Batch size per GPU for training.
    gradient_accumulation_steps=1, # This refers to the number of steps required to accumulate the gradients during the update process.
    optim="paged_adamw_32bit", # Model optimizer (AdamW optimizer).
    save_steps=25,
    logging_steps=25,
    learning_rate=2e-4, # Initial learning rate. (Llama 3.1 8B ile hesaplandı)
    weight_decay=0.001, # Weight decay is applied to all layers except bias/LayerNorm weights.
    fp16=False, # Disable fp16/bf16 training.
    bf16=False, # Disable fp16/bf16 training.
    max_grad_norm=0.3, # Gradient clipping.
    max_steps=-1,
    warmup_ratio=0.03,
    group_by_length=True,
    lr_scheduler_type="constant",
    report_to="tensorboard"
)
trainer = SFTTrainer(
    model=model,
    train_dataset=dataset,
    peft_config=peft_params,
    dataset_text_field="input",
    max_seq_length=None,
    tokenizer=tokenizer,
    args=training_params,
    packing=False,
)
train_output = trainer.train()
torch.cuda.empty_cache()

languages = {
    "Türkçe": "tr", 
    "Azərbaycan dili": "az",  
    "Deutsch": "de",          
    "English": "en",          
    "Français": "fr",        
    "Español": "es",         
    "Italiano": "it",        
    "Nederlands": "nl",      
    "Português": "pt",                
    "Русский": "ru",         
    "中文": "zh",             
    "日本語": "ja",           
    "한국어": "ko",           
    "عربي": "ar",          
    "हिन्दी": "hi",          
    "ภาษาไทย": "th",       
    "Tiếng Việt": "vi",      
    "فارسی": "fa",         
    "Svenska": "sv",         
    "Norsk": "no",           
    "Dansk": "da",
    "Čeština": "cs",
    "Ελληνικά": "el",   
    "Bosanski": "bs",        
    "Hrvatski": "hr",       
    "Shqip": "sq", 
    "Slovenčina": "sk",
    "Slovenščina": "sl",
    "Türkmençe": "tk", 
    "български" : "bg",
    "Кыргызча": "ky",          
    "Қазақша": "kk",           
    "Монгол": "mn",
    "Українська": "uk",
    "Cymraeg": "cy",
    "Tatarça": "tt",
    "Kiswahili": "sw",
    "Hausa": "ha",
    "አማርኛ": "am",
    "Èdè Yorùbá": "yo",
    "isiZulu": "zu",
    "chiShona": "sn",
    "isiXhosa": "xh"
}


tr_list = ["Lyra AI E-commerce Hackathon Project", "Select Model Sharpness", "Your Product", "Your Explanation About Your Product", "Generate", "Generated Image"]
tr_list_tr = []
@register_keras_serializable(package='Custom', name='mse')
def custom_mse(y_true, y_pred):
    return K.mean(K.square(y_true - y_pred))

class STN(layers.Layer):
    def __init__(self, **kwargs):
        super(STN, self).__init__(**kwargs)

    def build(self, input_shape):
        self.localization = tf.keras.Sequential([
            layers.Conv2D(16, (7, 7), activation='relu', input_shape=input_shape[1:]),
            layers.MaxPooling2D(pool_size=(2, 2)),
            layers.Conv2D(32, (5, 5), activation='relu'),
            layers.MaxPooling2D(pool_size=(2, 2)),
            layers.Flatten(),
            layers.Dense(50, activation='relu'),
            layers.Dense(6, activation='linear')
        ])

    def call(self, inputs):
        theta = self.localization(inputs)
        theta = tf.reshape(theta, [-1, 2, 3])
        grid = self.get_grid(tf.shape(inputs), theta)
        return self.sampler(inputs, grid)

    def get_grid(self, input_shape, theta):
        batch_size, height, width = input_shape[0], input_shape[1], input_shape[2]
        x_coords = tf.linspace(-1.0, 1.0, width)
        y_coords = tf.linspace(-1.0, 1.0, height)
        x_grid, y_grid = tf.meshgrid(x_coords, y_coords)
        ones = tf.ones_like(x_grid)
        grid = tf.stack([x_grid, y_grid, ones], axis=-1)
        grid = tf.reshape(grid, [1, height * width, 3])
        grid = tf.tile(grid, [batch_size, 1, 1])
        grid = tf.matmul(grid, tf.transpose(theta, [0, 2, 1]))
        return grid

    def sampler(self, inputs, grid):
        shape = tf.shape(inputs)
        batch_size = shape[0]
        height = shape[1]
        width = shape[2]
        channels = shape[3]
        resized_inputs = tf.image.resize(inputs, size=(height, width))
        return resized_inputs

get_custom_objects().update({'STN': STN})

###!!!Functions Should Be Here!!!###

def process_image(input_img):
    input_img=input_img.resize((224,224)) 
    input_img=np.array(input_img)
    input_img=input_img/255.0
    input_img=np.expand_dims(input_img,axis=0)
    return input_img
def blur_level(image):
    if isinstance(image, Image.Image):
        image = np.array(image)
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    laplacian = cv2.Laplacian(gray_image, cv2.CV_64F)
    variance = laplacian.var()
    return variance


image_model = load_model("autoencoder.h5", custom_objects={'mse': custom_mse})
torch.cuda.empty_cache()
language = st.selectbox("Select Language", list(languages.keys()))

if language:
    translator = GoogleTranslator(source='auto', target=languages[language])
    tr_list_tr = [translator.translate(text) for text in tr_list]

st.title(tr_list_tr[0])

threshold = st.slider(tr_list_tr[1], min_value = 50, max_value = 100, value = 75)
threshold=threshold*3
img = st.camera_input(tr_list_tr[2])
text = st.text_input(tr_list_tr[3])
if st.button(tr_list[4]):
    
    if img and text is not None:
        img=Image.open(img)
        img1=remove(img)
        if img1.mode == 'RGBA':
            img1 = img1.convert('RGB')
        input_img = process_image(img1)
        torch.cuda.empty_cache()
        prediction = image_model.predict(input_img)
        pred_img = np.clip(prediction[0], 0, 1) * 255 
        pred_img = Image.fromarray(pred_img.astype('uint8')) 
        level =  blur_level(pred_img)
        #st.write(level, threshold)
        prompt = f"""
You are extracting product title and description from given text and rewriting the description and enhancing it when necessary.
Always give response in the user's input language.
Always answer in the given json format. Do not use any other keywords. Do not make up anything.
Explanations should contain at least three sentences each.

Json Format:
{{
"title": "<title of the product>",
"description": "<description of the product>"
}}

Examples:

Product Information: Rosehip Marmalade, keep it cold
Answer: {{"title": "Rosehip Marmalade", "description": "You should store this delicisious roseship marmelade in cold conditions. You can use it in your breakfasts and meals."}}

Product Information: Blackberry jam spoils in the heat
Answer: {{"title": "Blackberry Jam", "description": "Please store it in cold conditions. Recommended to be consumed at breakfast. Very sweet."}}

Now answer this:
Product Information: {text}"""
        pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=10000)
        torch.cuda.empty_cache()
        if level < threshold:
            if img.mode == 'RGB':
                img = img.convert('RGB')
            init_image = img.thumbnail((768, 768))
            i_prompt = "Remove the background from the image and correct the perspective of the subject to ensure a straight and clear view."
            images = i_pipe(prompt=i_prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
            images[0].save("output.png")
            image = Image.open("./output.png")
            st.image(image, caption=tr_list_tr[5], use_column_width=True)
            result = pipe(f"Prompt: {prompt} \n Response:") # result = pipe(f"Prompt: {prompt} \n Response:")
            generated_text = result[0]['generated_text']
            st.write(generated_text)

        else:
            st.image(pred_img, caption=tr_list_tr[2], use_column_width=True)
            result = pipe(f"Prompt: {prompt} \n Response:") # result = pipe(f"Prompt: {prompt} \n Response:")
            generated_text = result[0]['generated_text']
            st.write(generated_text)