Spaces:
Running
Running
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
app.py
CHANGED
|
@@ -209,7 +209,8 @@ def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
|
|
| 209 |
batches.append(current_batch)
|
| 210 |
|
| 211 |
return batches
|
| 212 |
-
|
|
|
|
| 213 |
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, progress=gr.Progress()):
|
| 214 |
if exp_name == "F5-TTS":
|
| 215 |
ema_model = F5TTS_ema_model
|
|
@@ -294,6 +295,7 @@ def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence,
|
|
| 294 |
|
| 295 |
return (target_sample_rate, final_wave), spectrogram_path
|
| 296 |
|
|
|
|
| 297 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words=''):
|
| 298 |
if not custom_split_words.strip():
|
| 299 |
custom_words = [word.strip() for word in custom_split_words.split(',')]
|
|
@@ -342,7 +344,8 @@ def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_s
|
|
| 342 |
|
| 343 |
gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
|
| 344 |
return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence)
|
| 345 |
-
|
|
|
|
| 346 |
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
|
| 347 |
# Split the script into speaker blocks
|
| 348 |
speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
|
|
@@ -678,7 +681,7 @@ with gr.Blocks() as app_emotional:
|
|
| 678 |
|
| 679 |
# Output audio
|
| 680 |
audio_output_emotional = gr.Audio(label="Synthesized Audio")
|
| 681 |
-
|
| 682 |
def generate_emotional_speech(
|
| 683 |
regular_audio,
|
| 684 |
regular_ref_text,
|
|
|
|
| 209 |
batches.append(current_batch)
|
| 210 |
|
| 211 |
return batches
|
| 212 |
+
|
| 213 |
+
@gpu_decorator
|
| 214 |
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, progress=gr.Progress()):
|
| 215 |
if exp_name == "F5-TTS":
|
| 216 |
ema_model = F5TTS_ema_model
|
|
|
|
| 295 |
|
| 296 |
return (target_sample_rate, final_wave), spectrogram_path
|
| 297 |
|
| 298 |
+
@gpu_decorator
|
| 299 |
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, custom_split_words=''):
|
| 300 |
if not custom_split_words.strip():
|
| 301 |
custom_words = [word.strip() for word in custom_split_words.split(',')]
|
|
|
|
| 344 |
|
| 345 |
gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
|
| 346 |
return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence)
|
| 347 |
+
|
| 348 |
+
@gpu_decorator
|
| 349 |
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
|
| 350 |
# Split the script into speaker blocks
|
| 351 |
speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
|
|
|
|
| 681 |
|
| 682 |
# Output audio
|
| 683 |
audio_output_emotional = gr.Audio(label="Synthesized Audio")
|
| 684 |
+
@gpu_decorator
|
| 685 |
def generate_emotional_speech(
|
| 686 |
regular_audio,
|
| 687 |
regular_ref_text,
|