File size: 1,517 Bytes
a138702
 
e12547a
7f2524c
 
a138702
e12547a
820f31b
7f2524c
 
c19e950
a138702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2fbbc
4a8e482
a138702
 
 
44d501f
 
4f6f41d
44d501f
a138702
4f6f41d
a138702
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from transformers import pipeline
import gradio as gr
import os
from huggingface_hub import login


api_key = os.getenv("token")
login(token = api_key)


get_completion = pipeline("ner", model="elnasharomar2/PUNCERT_multi_stages_50_epochs")

def merge_tokens(tokens):
    merged_tokens = []
    for token in tokens:
        if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
            # If current token continues the entity of the last one, merge the two tokens
            last_token = merged_tokens[-1]
            last_token['word'] += token['word'].replace('##', '')
            last_token['end'] = token['end']
            last_token['score'] = (last_token['score'] + token['score']) / 2
        else:
            # Otherwise, add the token to the list
            merged_tokens.append(token)

    return merged_tokens

def ner(input):
    output = get_completion(input)
    merged_tokens = merge_tokens(output)
    print(output)
    return {"text": input, "entities": merged_tokens,"output":output}

gr.close_all()
demo = gr.Interface(fn=ner,
                    inputs=[gr.Textbox(label="Text to find Punctuation", lines=2)],
                    outputs=[gr.HighlightedText(label="Text with Punct")],
                    title="Puncituation Predictor",
                    description="Find Puncituations using the `BERT-base` model under the hood!",
                    allow_flagging="never",
                    examples=[])
demo.launch()