Spaces:
Runtime error
Runtime error
File size: 1,517 Bytes
a138702 e12547a 7f2524c a138702 e12547a 820f31b 7f2524c c19e950 a138702 2e2fbbc 4a8e482 a138702 44d501f 4f6f41d 44d501f a138702 4f6f41d a138702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
from transformers import pipeline
import gradio as gr
import os
from huggingface_hub import login
api_key = os.getenv("token")
login(token = api_key)
get_completion = pipeline("ner", model="elnasharomar2/PUNCERT_multi_stages_50_epochs")
def merge_tokens(tokens):
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If current token continues the entity of the last one, merge the two tokens
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
def ner(input):
output = get_completion(input)
merged_tokens = merge_tokens(output)
print(output)
return {"text": input, "entities": merged_tokens,"output":output}
gr.close_all()
demo = gr.Interface(fn=ner,
inputs=[gr.Textbox(label="Text to find Punctuation", lines=2)],
outputs=[gr.HighlightedText(label="Text with Punct")],
title="Puncituation Predictor",
description="Find Puncituations using the `BERT-base` model under the hood!",
allow_flagging="never",
examples=[])
demo.launch() |