from math import log2 import librosa import numpy as np def _get_n_fft(freq_res_hz: int, sr: int) -> int: """ :freq_res: frequency resolution in Hz = sample_rate / n_fft how good you can differentiate between frequency components which are at least ‘this’ amount far apart. :sr: sampling_rate The n_fft specifies the FFT length, i.e. the number of bins. Low frequencies are more distinguishable when n_fft is higher. For computational reason n_fft is a power of 2 (2, 4, 8, 16, ...) """ return 2 ** round(log2(sr / freq_res_hz)) def get_spectrogram_dB( raw_wave: np.ndarray, freq_res_hz: int = 5, sr: int = 12000 ) -> np.ndarray: spectrogram_complex = librosa.stft(y=raw_wave, n_fft=_get_n_fft(freq_res_hz, sr)) spectrogram_amplitude = np.abs(spectrogram_complex) return librosa.amplitude_to_db(spectrogram_amplitude, ref=np.max) def get_mel_spectrogram_dB( raw_wave: np.ndarray, freq_res_hz: int = 5, sr: int = 12000 ) -> np.ndarray: spectrogram_complex = librosa.stft(y=raw_wave, n_fft=_get_n_fft(freq_res_hz, sr)) spectrogram_amplitude = np.abs(spectrogram_complex) mel_scale_sepctrogram = librosa.feature.melspectrogram( S=spectrogram_amplitude, sr=sr ) return librosa.amplitude_to_db(mel_scale_sepctrogram, ref=np.max)