el2389 commited on
Commit
c18aba1
·
verified ·
1 Parent(s): d23b3eb

Upload 5 files

Browse files
Files changed (5) hide show
  1. README.md +57 -8
  2. app.py +8 -0
  3. best.pt +3 -0
  4. requirements.txt +2 -0
  5. yolov8_background1k_best.pt +3 -0
README.md CHANGED
@@ -1,11 +1,60 @@
1
  ---
2
- title: Lobaarm
3
- emoji: 📉
4
- colorFrom: purple
5
- colorTo: green
6
- sdk: static
7
- pinned: false
8
- license: apache-2.0
 
 
 
9
  ---
10
 
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - precision
7
+ pipeline_tag: object-detection
8
+ tags:
9
+ - Classification
10
+ - YoloV8
11
+ - Guns Detection
12
  ---
13
 
14
+ ## Model Details
15
+ YoloV8n 3M parameters model for Guns Detection, trained on 16k images
16
+ ### Model Description
17
+
18
+ <!-- Provide a longer summary of what this model is. -->
19
+
20
+
21
+
22
+ - **Shared by [optional]:** Karun Sharma
23
+ - **License:** MIT
24
+
25
+ ### Model Sources [optional]
26
+
27
+ <!-- Provide the basic links for the model. -->
28
+
29
+ - **Demo:** https://huggingface.co/spaces/Zcket/Gun_Detect
30
+
31
+ ## Uses
32
+ Can be used to detect presenece of Guns in images for Moderation.
33
+
34
+
35
+
36
+ ### Downstream Use [optional]
37
+ Classes of Arms/Guns(Pistols, Grenades)
38
+
39
+
40
+ ## How to Get Started with the Model
41
+
42
+ Use the code below to get started with the model.
43
+
44
+ ```py
45
+ from ultralytics import YOLO
46
+
47
+ model = YOLO('best.pt')
48
+
49
+ results = model(['im1.jpg', 'im2.jpg']) # return a list of Results objects
50
+
51
+ # Process results list
52
+ for result in results:
53
+ boxes = result.boxes # Boxes object for bounding box outputs
54
+ masks = result.masks # Masks object for segmentation masks outputs
55
+ keypoints = result.keypoints # Keypoints object for pose outputs
56
+ probs = result.probs # Probs object for classification outputs
57
+ result.show() # display to screen
58
+ result.save(filename='result.jpg') # save to disk
59
+ ```
60
+
app.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from ultralytics import YOLO
2
+
3
+ model = YOLO('best.pt')
4
+
5
+ image_path = input("Enter image path: ")
6
+ results = model(image_path, device = 0, amp = 'True') # return a list of Results objects
7
+
8
+ print(results)
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7741299264b8915ef70c8eadd9e443bb77dd2dc3756012fc933d0e6d023fe913
3
+ size 132
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ ultralytics
yolov8_background1k_best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34ab3b563e937680ad12b5a382b086b9e6a79c1bc950e70106560b2ad3a3e2aa
3
+ size 133