|
from typing import List, Tuple, Callable
|
|
from pathlib import Path
|
|
import PIL.Image
|
|
import numpy as np
|
|
import datasets
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
|
|
class SegmentationDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
root: str,
|
|
subset: str,
|
|
transform: Callable = None,
|
|
target_transform: Callable = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.images_dir = Path(root) / "images" / subset
|
|
self.masks_dir = Path(root) / "annotations" / subset
|
|
self.transform = transform
|
|
self.target_transform = target_transform
|
|
|
|
self.images = sorted(list(Path(self.images_dir).glob("**/*.jpg")))
|
|
self.masks = sorted(list(Path(self.masks_dir).glob("**/*.png")))
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.images)
|
|
|
|
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
image = PIL.Image.open(self.images[idx]).convert("RGB")
|
|
mask = PIL.Image.open(self.masks[idx]).convert("L")
|
|
if self.transform:
|
|
image = self.transform(image)
|
|
if self.target_transform:
|
|
mask = self.target_transform(mask)
|
|
return image, mask
|
|
|
|
|
|
def collate_fn(items: List[Tuple[torch.Tensor, torch.Tensor]]) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
images = torch.stack([item[0] for item in items])
|
|
masks = torch.stack([item[1] for item in items])
|
|
return images, masks
|
|
|
|
|