photo-filter / app.py
OzlemAkgunoglu's picture
Upload app.py
65d70bf verified
raw
history blame
5.43 kB
'''
author : OzlemAkgunoglu
github : https://github.com/OzlemAkgunoglu
Dynamic Photo Filter App
This is a Dynamic Photo Filter App that allows you to apply various filters to your images.
Adjust brightness, contrast, sharpening, and select a filter for real-time changes.
And this app is created using OpenCV and Gradio. Thank you for using it. '''
#Let's load the necessary libraries
import cv2 as cv #OpenCV for image processing
import numpy as np #Numpy for arrays
import gradio as gr #Gradio for UI
# Let's define the filter functions
def apply_grayscale(image):
return cv.cvtColor(image, cv.COLOR_BGR2GRAY) #Convert the image to grayscale
#Sepia filter function
def apply_sepia(image):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
sepia_image = cv.transform(image, sepia_filter) #Apply the filter
return np.clip(sepia_image, 0, 255).astype(np.uint8) #clip to hold values between 0 and 255 prevent excessive brightness or darkening.
def apply_negative(image):
return cv.bitwise_not(image) #Invert the image
#sketch filter
'''Apply Gaussian blur to decrease the noise
and remove unwanted details in the image for better sketch effect '''
def apply_sketch(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) #Convert the image to grayscale
inv = cv.bitwise_not(gray) #Invert the grayscale image
blurred = cv.GaussianBlur(inv, (21, 21), sigmaX=0, sigmaY=0)
sketch_image = cv.divide(gray, 255 - blurred, scale=256)
# divide= gray / (255 - blurred) Normalizes the division result to prevent overly high values by scaling with 256
return sketch_image
def apply_sharpen(image, sharpening):
sharpening_filter = np.array([[0, -1, 0],
[-1, 5 + sharpening, -1],
[0, -1, 0]])
return cv.filter2D(image, -1, sharpening_filter) #Apply the filter each pixel is multiplied by the value in the kernel
def apply_edge_detection(image):
return cv.Canny(image, 100, 200)
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv.transform(frame, fall_filter)
# Dictionary to map filter names to functions
filter_functions = {
"Grayscale": apply_grayscale,
"Sepia": apply_sepia,
"Negative": apply_negative,
"Sketch": apply_sketch,
"Sharpen": apply_sharpen,
"Edge Detection": apply_edge_detection,
"Fall": apply_fall_filter
}
# Main function to apply selected filters
def apply_filters(image, filter_type, brightness, contrast, sharpening):
if image is None:
print("Input image is empty!") #for debugging
return None # Return None if the input image is empty
# Adjust brightness and contrast
image = cv.convertScaleAbs(image, alpha=contrast, beta=brightness)
#for debugging
#print("Image after brightness and contrast adjustment:", image)
# Apply the selected filter from dictionary called filter_functions in line 53
if filter_type in filter_functions:
if filter_type == "Sharpen":
image = filter_functions[filter_type](image, sharpening) # Calls the Sharpen filter with the sharpening parameter for custom sharpening level
else:
image = filter_functions[filter_type](image)
return image
# Define Interface
with gr.Blocks() as app:
# Title and Description
gr.Markdown("<h1 style='text-align: center;'>Dynamic Photo Filter App</h1>")
gr.Markdown("This app allows you to apply various filters to your images. Adjust brightness, contrast, sharpening, and select a filter for real-time changes.")
# Choices and Sliders at the Top
with gr.Row():
filter_choice = gr.Radio(["Original", "Grayscale", "Sketch", "Sepia", "Negative", "Sharpen", "Edge Detection","Fall"],label="Filter")
with gr.Column():
brightness_slider = gr.Slider(-100, 100, step=1, label="Brightness", value=0)
contrast_slider = gr.Slider(0.5, 3.0, step=0.1, label="Contrast", value=1.0)
sharpening_slider = gr.Slider(0, 5, step=0.1, label="Sharpening", value=0)
# Horizontal display of the images
with gr.Row():
image_input = gr.Image(label="Upload Image", type="numpy")
image_output = gr.Image(label="Filtered Image")
# Link events for real-time updates
image_input.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
filter_choice.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
brightness_slider.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
contrast_slider.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
sharpening_slider.change(apply_filters, inputs=[image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider], outputs=image_output)
app.launch(share=True)