Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import json
|
| 6 |
+
from typing import Dict, List, Tuple
|
| 7 |
+
|
| 8 |
+
st.set_page_config(
|
| 9 |
+
page_title="LLM Healthcare Benchmarking Budgeting",
|
| 10 |
+
page_icon="🩺",
|
| 11 |
+
layout="wide"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
blue_to_gray_palette = ["#0077b6", "#4a98c9", "#7ba7c5", "#a6b5c1", "#d0d7dc"]
|
| 15 |
+
|
| 16 |
+
st.markdown("""
|
| 17 |
+
<style>
|
| 18 |
+
.main-header {
|
| 19 |
+
font-size: 2.5rem;
|
| 20 |
+
font-weight: bold;
|
| 21 |
+
margin-bottom: 1rem;
|
| 22 |
+
}
|
| 23 |
+
.section-header {
|
| 24 |
+
font-size: 1.5rem;
|
| 25 |
+
font-weight: bold;
|
| 26 |
+
margin-top: 2rem;
|
| 27 |
+
margin-bottom: 1rem;
|
| 28 |
+
}
|
| 29 |
+
.info-box {
|
| 30 |
+
background-color: #f0f2f6;
|
| 31 |
+
padding: 1rem;
|
| 32 |
+
border-radius: 0.5rem;
|
| 33 |
+
margin-bottom: 1rem;
|
| 34 |
+
}
|
| 35 |
+
.cost-highlight {
|
| 36 |
+
font-size: 1.2rem;
|
| 37 |
+
font-weight: bold;
|
| 38 |
+
color: #ff4b4b;
|
| 39 |
+
}
|
| 40 |
+
</style>
|
| 41 |
+
""", unsafe_allow_html=True)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
st.markdown('<div class="main-header">LLM Healthcare Benchmarking for MedMCQA</div>', unsafe_allow_html=True)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
default_models_json = """{
|
| 48 |
+
"OpenAI gpt-4.5-preview": {"input_cost": 75, "output_cost": 150},
|
| 49 |
+
"OpenAI gpt-4o": {"input_cost": 2.5, "output_cost": 10},
|
| 50 |
+
"OpenAI gpt-4o-mini": {"input_cost": 0.15, "output_cost": 0.6},
|
| 51 |
+
"OpenAI o1": {"input_cost": 15, "output_cost": 60},
|
| 52 |
+
"OpenAI o1-mini": {"input_cost": 1.1, "output_cost": 4.4},
|
| 53 |
+
"OpenAI o3-mini": {"input_cost": 1.1, "output_cost": 4.4},
|
| 54 |
+
"Anthropic Claude 3.7 Sonnet": {"input_cost": 3, "output_cost": 15},
|
| 55 |
+
"Anthropic Claude 3.5 Haiku": {"input_cost": 0.8, "output_cost": 4},
|
| 56 |
+
"Anthropic Claude 3 Opus": {"input_cost": 0.8, "output_cost": 4},
|
| 57 |
+
"Anthropic Claude 3.5 Sonnet": {"input_cost": 3, "output_cost": 15},
|
| 58 |
+
"Anthropic Claude 3 Haiku": {"input_cost": 0.25, "output_cost": 1.25},
|
| 59 |
+
"TogetherAI DeepSeek-R1": {"input_cost": 3, "output_cost": 7},
|
| 60 |
+
"Llama 3.2 3B Instruct Turbo": {"input_cost": 0.06, "output_cost": 0.06},
|
| 61 |
+
"Gemini 2.0 Flash": {"input_cost": 0.1, "output_cost": 0.4},
|
| 62 |
+
"Gemini 2.0 Flash-Lite": {"input_cost": 0.075, "output_cost": 0.3},
|
| 63 |
+
"Gemini 1.5 Pro": {"input_cost": 1.25, "output_cost": 5},
|
| 64 |
+
"Gemini Pro": {"input_cost": 0.5, "output_cost": 1.5}
|
| 65 |
+
}"""
|
| 66 |
+
|
| 67 |
+
# Add JSON editor to sidebar
|
| 68 |
+
st.sidebar.markdown('<div class="section-header">LLM Models Configuration</div>', unsafe_allow_html=True)
|
| 69 |
+
st.sidebar.markdown("Edit the JSON below to modify existing models or add new ones:")
|
| 70 |
+
|
| 71 |
+
# Display JSON in a text area for editing
|
| 72 |
+
models_json = st.sidebar.text_area("Models JSON", default_models_json, height=400)
|
| 73 |
+
|
| 74 |
+
# Parse the JSON input
|
| 75 |
+
try:
|
| 76 |
+
llm_models = json.loads(models_json)
|
| 77 |
+
except json.JSONDecodeError as e:
|
| 78 |
+
st.sidebar.error(f"Invalid JSON: {str(e)}")
|
| 79 |
+
# Use default models if JSON is invalid
|
| 80 |
+
llm_models = json.loads(default_models_json)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
medmcqa_splits = {
|
| 84 |
+
"Single-Select Questions": {
|
| 85 |
+
"questions": 120765,
|
| 86 |
+
"avg_q_tokens": 12.77, # Using the train dataset average
|
| 87 |
+
"description": "Single-select questions from the MedMCQA train dataset"
|
| 88 |
+
}
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
col1, col2 = st.columns([2, 1])
|
| 92 |
+
|
| 93 |
+
with col1:
|
| 94 |
+
st.markdown('<div class="section-header">Select LLM Models</div>', unsafe_allow_html=True)
|
| 95 |
+
|
| 96 |
+
selected_models = st.multiselect(
|
| 97 |
+
"Choose one or more LLM models:",
|
| 98 |
+
options=list(llm_models.keys()),
|
| 99 |
+
default=list(llm_models.keys())[:2]
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
with st.expander("View Model Details"):
|
| 103 |
+
models_df = pd.DataFrame([
|
| 104 |
+
{
|
| 105 |
+
"Model": model,
|
| 106 |
+
"Input Cost (per 1M tokens)": f"${llm_models[model]['input_cost']:.2f}",
|
| 107 |
+
"Output Cost (per 1M tokens)": f"${llm_models[model]['output_cost']:.2f}"
|
| 108 |
+
}
|
| 109 |
+
for model in llm_models
|
| 110 |
+
])
|
| 111 |
+
st.dataframe(models_df, use_container_width=True)
|
| 112 |
+
|
| 113 |
+
with col2:
|
| 114 |
+
st.markdown('<div class="section-header">MedMCQA Dataset</div>', unsafe_allow_html=True)
|
| 115 |
+
|
| 116 |
+
st.markdown(f"""
|
| 117 |
+
**Single-Select Questions:** {medmcqa_splits['Single-Select Questions']['questions']:,}
|
| 118 |
+
|
| 119 |
+
**Average Question Tokens:** {medmcqa_splits['Single-Select Questions']['avg_q_tokens']}
|
| 120 |
+
|
| 121 |
+
**Description:** {medmcqa_splits['Single-Select Questions']['description']}
|
| 122 |
+
""")
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
st.markdown('<div class="section-header">Cost Simulation Parameters</div>', unsafe_allow_html=True)
|
| 126 |
+
|
| 127 |
+
col1, col2 = st.columns(2)
|
| 128 |
+
|
| 129 |
+
with col1:
|
| 130 |
+
prompt_tokens = st.number_input(
|
| 131 |
+
"Number of Prompt Tokens per Question",
|
| 132 |
+
min_value=1,
|
| 133 |
+
max_value=1000,
|
| 134 |
+
value=200,
|
| 135 |
+
step=10,
|
| 136 |
+
help="Number of tokens in each prompt (including the question and any additional instructions)"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
with col2:
|
| 140 |
+
output_tokens = st.number_input(
|
| 141 |
+
"Average Output Tokens per Question",
|
| 142 |
+
min_value=1,
|
| 143 |
+
max_value=1000,
|
| 144 |
+
value=100,
|
| 145 |
+
step=10,
|
| 146 |
+
help="Average number of tokens in the model's response"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
col1, col2, col3 = st.columns(3)
|
| 150 |
+
|
| 151 |
+
with col1:
|
| 152 |
+
num_runs = st.number_input(
|
| 153 |
+
"Number of Evaluation Runs",
|
| 154 |
+
min_value=1,
|
| 155 |
+
max_value=1000,
|
| 156 |
+
value=1,
|
| 157 |
+
step=1,
|
| 158 |
+
help="How many times each dataset will be processed by each model"
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
with col2:
|
| 162 |
+
st.write("")
|
| 163 |
+
|
| 164 |
+
with col3:
|
| 165 |
+
sampling_percentage = st.slider(
|
| 166 |
+
"Dataset Sampling Percentage",
|
| 167 |
+
min_value=1,
|
| 168 |
+
max_value=100,
|
| 169 |
+
value=100,
|
| 170 |
+
step=1,
|
| 171 |
+
help="Percentage of questions to process from each split"
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def calculate_costs(models, prompt_token_count, output_token_count, runs, sampling_pct):
|
| 176 |
+
results = []
|
| 177 |
+
|
| 178 |
+
total_questions = medmcqa_splits["Single-Select Questions"]["questions"]
|
| 179 |
+
num_questions = int(total_questions * (sampling_pct / 100))
|
| 180 |
+
|
| 181 |
+
for model in models:
|
| 182 |
+
model_input_cost = llm_models[model]["input_cost"]
|
| 183 |
+
model_output_cost = llm_models[model]["output_cost"]
|
| 184 |
+
|
| 185 |
+
total_input_tokens = num_questions * prompt_token_count * runs
|
| 186 |
+
total_output_tokens = num_questions * output_token_count * runs
|
| 187 |
+
|
| 188 |
+
input_cost = (total_input_tokens / 1000000) * model_input_cost
|
| 189 |
+
output_cost = (total_output_tokens / 1000000) * model_output_cost
|
| 190 |
+
total_cost = input_cost + output_cost
|
| 191 |
+
|
| 192 |
+
results.append({
|
| 193 |
+
"Model": model,
|
| 194 |
+
"Questions": num_questions, # Changed from Total Questions to Questions
|
| 195 |
+
"Number of Prompt Tokens per Question": prompt_token_count,
|
| 196 |
+
"Number of Output Tokens per Question": output_token_count,
|
| 197 |
+
"Total Input Tokens": total_input_tokens,
|
| 198 |
+
"Total Output Tokens": total_output_tokens,
|
| 199 |
+
"Input Cost": input_cost,
|
| 200 |
+
"Output Cost": output_cost,
|
| 201 |
+
"Total Cost": total_cost,
|
| 202 |
+
"Split": "Single-Select Questions"
|
| 203 |
+
})
|
| 204 |
+
|
| 205 |
+
cost_df = pd.DataFrame(results)
|
| 206 |
+
|
| 207 |
+
model_summary = cost_df.groupby("Model").agg({
|
| 208 |
+
"Input Cost": "sum",
|
| 209 |
+
"Output Cost": "sum",
|
| 210 |
+
"Total Cost": "sum"
|
| 211 |
+
}).reset_index()
|
| 212 |
+
|
| 213 |
+
# Fixed: Using columns that actually exist in the DataFrame
|
| 214 |
+
split_summary = cost_df.groupby("Split").agg({
|
| 215 |
+
"Questions": "sum", # Changed from "Total Questions"
|
| 216 |
+
"Total Input Tokens": "sum",
|
| 217 |
+
"Total Output Tokens": "sum",
|
| 218 |
+
"Total Cost": "sum"
|
| 219 |
+
}).reset_index()
|
| 220 |
+
|
| 221 |
+
return cost_df, model_summary, split_summary
|
| 222 |
+
|
| 223 |
+
if selected_models:
|
| 224 |
+
detailed_costs, model_summary, split_summary = calculate_costs(
|
| 225 |
+
selected_models,
|
| 226 |
+
prompt_tokens,
|
| 227 |
+
output_tokens,
|
| 228 |
+
num_runs,
|
| 229 |
+
sampling_percentage
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
total_cost = detailed_costs["Total Cost"].sum()
|
| 233 |
+
total_questions = detailed_costs["Questions"][0] # Changed from "Total Questions"
|
| 234 |
+
total_input_tokens = detailed_costs["Total Input Tokens"].sum()
|
| 235 |
+
total_output_tokens = detailed_costs["Total Output Tokens"].sum()
|
| 236 |
+
|
| 237 |
+
st.markdown('<div class="section-header">Cost Calculation Breakdown</div>', unsafe_allow_html=True)
|
| 238 |
+
|
| 239 |
+
with st.expander("View Detailed Cost Calculation Formula", expanded=False):
|
| 240 |
+
st.markdown("""
|
| 241 |
+
### Cost Calculation Formula
|
| 242 |
+
|
| 243 |
+
For each model, the cost is calculated as:
|
| 244 |
+
|
| 245 |
+
```
|
| 246 |
+
Input Cost = (Number of Questions × Prompt Tokens per Question × Number of Runs ÷ 1,000,000) × Input Cost per Million Tokens
|
| 247 |
+
Output Cost = (Number of Questions × Output Tokens per Question × Number of Runs ÷ 1,000,000) × Output Cost per Million Tokens
|
| 248 |
+
Total Cost = Input Cost + Output Cost
|
| 249 |
+
```
|
| 250 |
+
|
| 251 |
+
""")
|
| 252 |
+
|
| 253 |
+
for model in selected_models:
|
| 254 |
+
model_data = detailed_costs[detailed_costs["Model"] == model].iloc[0]
|
| 255 |
+
model_input_cost = llm_models[model]["input_cost"]
|
| 256 |
+
model_output_cost = llm_models[model]["output_cost"]
|
| 257 |
+
|
| 258 |
+
model_input_tokens = model_data["Total Input Tokens"]
|
| 259 |
+
model_output_tokens = model_data["Total Output Tokens"]
|
| 260 |
+
model_input_cost_total = model_data["Input Cost"]
|
| 261 |
+
model_output_cost_total = model_data["Output Cost"]
|
| 262 |
+
model_total_cost = model_data["Total Cost"]
|
| 263 |
+
|
| 264 |
+
st.markdown(f"""
|
| 265 |
+
#### {model}:
|
| 266 |
+
|
| 267 |
+
**Input Cost Calculation:**
|
| 268 |
+
({total_questions:,} questions × {prompt_tokens} tokens × {num_runs} runs ÷ 1,000,000) × ${model_input_cost:.2f} = ${model_input_cost_total:.2f}
|
| 269 |
+
|
| 270 |
+
**Output Cost Calculation:**
|
| 271 |
+
({total_questions:,} questions × {output_tokens} tokens × {num_runs} runs ÷ 1,000,000) × ${model_output_cost:.2f} = ${model_output_cost_total:.2f}
|
| 272 |
+
|
| 273 |
+
**Total Cost for {model}:** ${model_total_cost:.2f}
|
| 274 |
+
""")
|
| 275 |
+
|
| 276 |
+
st.markdown(f"""
|
| 277 |
+
<div class="info-box">
|
| 278 |
+
<div class="section-header">Total Estimated Cost</div>
|
| 279 |
+
<div class="cost-highlight">${total_cost:.2f}</div>
|
| 280 |
+
<p>For processing {total_questions:,} questions ({sampling_percentage}% of total)
|
| 281 |
+
with {len(selected_models)} models, {num_runs} time{'s' if num_runs > 1 else ''}.</p>
|
| 282 |
+
<p>Using {prompt_tokens} prompt tokens and {output_tokens} output tokens per question.</p>
|
| 283 |
+
<p>Total tokens processed: {total_input_tokens:,} input tokens + {total_output_tokens:,} output tokens = {total_input_tokens + total_output_tokens:,} total tokens</p>
|
| 284 |
+
</div>
|
| 285 |
+
""", unsafe_allow_html=True)
|
| 286 |
+
|
| 287 |
+
tab1, tab2 = st.tabs(["Cost Breakdown", "Detailed Costs"])
|
| 288 |
+
|
| 289 |
+
with tab1:
|
| 290 |
+
col1, col2 = st.columns(2)
|
| 291 |
+
|
| 292 |
+
with col1:
|
| 293 |
+
cost_types = ["Input Cost", "Output Cost"]
|
| 294 |
+
|
| 295 |
+
fig1 = px.bar(
|
| 296 |
+
model_summary,
|
| 297 |
+
x="Model",
|
| 298 |
+
y=cost_types,
|
| 299 |
+
title="Cost Breakdown by Model",
|
| 300 |
+
labels={"value": "Cost ($)", "variable": "Cost Type"},
|
| 301 |
+
color_discrete_sequence=blue_to_gray_palette,
|
| 302 |
+
)
|
| 303 |
+
fig1.update_layout(legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1))
|
| 304 |
+
st.plotly_chart(fig1, use_container_width=True)
|
| 305 |
+
|
| 306 |
+
with col2:
|
| 307 |
+
fig2 = go.Figure(data=[
|
| 308 |
+
go.Pie(
|
| 309 |
+
labels=model_summary["Model"],
|
| 310 |
+
values=model_summary["Total Cost"],
|
| 311 |
+
hole=.4,
|
| 312 |
+
textinfo="label+percent",
|
| 313 |
+
marker_colors=blue_to_gray_palette,
|
| 314 |
+
)
|
| 315 |
+
])
|
| 316 |
+
fig2.update_layout(title_text="Proportion of Total Cost by Model")
|
| 317 |
+
st.plotly_chart(fig2, use_container_width=True)
|
| 318 |
+
|
| 319 |
+
if "Split" in detailed_costs.columns and len(detailed_costs["Split"].unique()) > 1:
|
| 320 |
+
pivot_df = detailed_costs.pivot(index="Split", columns="Model", values="Total Cost")
|
| 321 |
+
fig4 = px.imshow(
|
| 322 |
+
pivot_df,
|
| 323 |
+
labels=dict(x="Model", y="Split", color="Cost ($)"),
|
| 324 |
+
x=pivot_df.columns,
|
| 325 |
+
y=pivot_df.index,
|
| 326 |
+
color_continuous_scale=["#0077b6", "#4a98c9", "#7ba7c5", "#a6b5c1", "#d0d7dc"],
|
| 327 |
+
title="Cost Heatmap (Model vs Split)",
|
| 328 |
+
text_auto='.2f',
|
| 329 |
+
)
|
| 330 |
+
fig4.update_layout(height=400)
|
| 331 |
+
st.plotly_chart(fig4, use_container_width=True)
|
| 332 |
+
|
| 333 |
+
with tab2:
|
| 334 |
+
# Fixed display columns to match the actual DataFrame columns
|
| 335 |
+
display_cols = [
|
| 336 |
+
"Model", "Questions", # Changed from "Total Questions"
|
| 337 |
+
"Number of Prompt Tokens per Question", "Number of Output Tokens per Question",
|
| 338 |
+
"Total Input Tokens", "Total Output Tokens",
|
| 339 |
+
"Input Cost", "Output Cost", "Total Cost"
|
| 340 |
+
]
|
| 341 |
+
|
| 342 |
+
formatted_df = detailed_costs[display_cols].copy()
|
| 343 |
+
|
| 344 |
+
# Format currency columns
|
| 345 |
+
for col in ["Input Cost", "Output Cost", "Total Cost"]:
|
| 346 |
+
if col in formatted_df.columns:
|
| 347 |
+
formatted_df[col] = formatted_df[col].map("${:.2f}".format)
|
| 348 |
+
|
| 349 |
+
# Format number columns
|
| 350 |
+
for col in ["Questions", "Total Input Tokens", "Total Output Tokens"]: # Changed from "Total Questions"
|
| 351 |
+
if col in formatted_df.columns:
|
| 352 |
+
formatted_df[col] = formatted_df[col].map("{:,}".format)
|
| 353 |
+
|
| 354 |
+
st.dataframe(formatted_df, use_container_width=True)
|
| 355 |
+
|
| 356 |
+
st.markdown('<div class="section-header">Export Results</div>', unsafe_allow_html=True)
|
| 357 |
+
|
| 358 |
+
col1, col2 = st.columns(2)
|
| 359 |
+
|
| 360 |
+
with col1:
|
| 361 |
+
csv = detailed_costs.to_csv(index=False)
|
| 362 |
+
st.download_button(
|
| 363 |
+
label="Download Full Results (CSV)",
|
| 364 |
+
data=csv,
|
| 365 |
+
file_name="medmcqa_llm_cost_analysis.csv",
|
| 366 |
+
mime="text/csv",
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
with col2:
|
| 370 |
+
export_json = {
|
| 371 |
+
"parameters": {
|
| 372 |
+
"models": selected_models,
|
| 373 |
+
"dataset": "MedMCQA Single-Select Questions",
|
| 374 |
+
"total_questions": medmcqa_splits["Single-Select Questions"]["questions"],
|
| 375 |
+
"prompt_tokens": prompt_tokens,
|
| 376 |
+
"output_tokens": output_tokens,
|
| 377 |
+
"sampling_percentage": sampling_percentage,
|
| 378 |
+
"num_runs": num_runs
|
| 379 |
+
},
|
| 380 |
+
"results": {
|
| 381 |
+
"total_cost": float(total_cost),
|
| 382 |
+
"detailed_costs": detailed_costs.to_dict(orient="records"),
|
| 383 |
+
"model_summary": model_summary.to_dict(orient="records")
|
| 384 |
+
}
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
st.download_button(
|
| 388 |
+
label="Download Full Results (JSON)",
|
| 389 |
+
data=json.dumps(export_json, indent=4),
|
| 390 |
+
file_name="medmcqa_llm_cost_analysis.json",
|
| 391 |
+
mime="application/json",
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
else:
|
| 395 |
+
st.info("Please select at least one model and one dataset split to calculate costs.")
|