File size: 5,511 Bytes
581e3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

st.set_page_config(page_title="LLM API Budget Dashboard", layout="wide")

# Title and description
st.title("LLM API Budget Dashboard")
st.markdown("This dashboard helps you budget your API calls to various LLMs based on input and output tokens.")

# Define LLM models and their costs
llm_data = {
    "GPT-4o": {"input_cost_per_m": 2.50, "output_cost_per_m": 10.00},
    "Claude 3.7 Sonnet": {"input_cost_per_m": 3.00, "output_cost_per_m": 15.00},
    "Gemini Flash 1.5-8b": {"input_cost_per_m": 0.038, "output_cost_per_m": 0.15},
    "o3-mini": {"input_cost_per_m": 1.10, "output_cost_per_m": 4.40}
}

# Convert the LLM data to a DataFrame for displaying in a table
llm_df = pd.DataFrame([
    {
        "Model": model, 
        "Input Cost ($/M tokens)": data["input_cost_per_m"], 
        "Output Cost ($/M tokens)": data["output_cost_per_m"]
    } 
    for model, data in llm_data.items()
])

# Display LLM cost info
st.subheader("LLM Cost Information")
st.dataframe(llm_df, use_container_width=True)

# Create sidebar for inputs
st.sidebar.header("Configuration")

# Token input section
st.sidebar.subheader("Token Settings")
input_tokens = st.sidebar.number_input("Input Tokens", min_value=1, value=1000, step=100)
output_tokens = st.sidebar.number_input("Output Tokens", min_value=1, value=500, step=100)

# LLM selection
st.sidebar.subheader("Select LLMs")
selected_llms = st.sidebar.multiselect("Choose LLMs", options=list(llm_data.keys()), default=list(llm_data.keys()))

# Run count settings
st.sidebar.subheader("Run Count Settings")
uniform_runs = st.sidebar.checkbox("Run all LLMs the same number of times", value=True)

if uniform_runs:
    uniform_run_count = st.sidebar.number_input("Number of runs for all LLMs", min_value=1, value=1, step=1)
    run_counts = {llm: uniform_run_count for llm in selected_llms}
else:
    st.sidebar.write("Set individual run counts for each LLM:")
    run_counts = {}
    for llm in selected_llms:
        run_counts[llm] = st.sidebar.number_input(f"Runs for {llm}", min_value=1, value=1, step=1)

# Stability test settings
st.sidebar.subheader("Stability Test Settings")
stability_test = st.sidebar.checkbox("Enable stability testing", value=False)

if stability_test:
    st.sidebar.write("Set stability iterations for selected LLMs:")
    stability_iterations = {}
    for llm in selected_llms:
        stability_enabled = st.sidebar.checkbox(f"Test stability for {llm}", value=False)
        if stability_enabled:
            iterations = st.sidebar.number_input(f"Iterations for {llm}", min_value=2, value=10, step=1)
            stability_iterations[llm] = iterations
else:
    stability_iterations = {}

# Calculate costs
results = []

for llm in selected_llms:
    base_runs = run_counts[llm]
    stability_runs = stability_iterations.get(llm, 0)
    total_runs = base_runs * (1 if stability_runs == 0 else stability_runs)
    
    total_input_tokens = input_tokens * total_runs
    total_output_tokens = output_tokens * total_runs
    
    input_cost = (total_input_tokens / 1_000_000) * llm_data[llm]["input_cost_per_m"]
    output_cost = (total_output_tokens / 1_000_000) * llm_data[llm]["output_cost_per_m"]
    total_cost = input_cost + output_cost
    
    results.append({
        "Model": llm,
        "Base Runs": base_runs,
        "Stability Test Iterations": stability_iterations.get(llm, 0),
        "Total Runs": total_runs,
        "Total Input Tokens": total_input_tokens,
        "Total Output Tokens": total_output_tokens,
        "Input Cost ($)": input_cost,
        "Output Cost ($)": output_cost,
        "Total Cost ($)": total_cost
    })

# Create DataFrame from results
results_df = pd.DataFrame(results)

# Main content
st.header("Cost Summary")
st.dataframe(results_df, use_container_width=True)

# Calculate overall totals
total_input_cost = results_df["Input Cost ($)"].sum()
total_output_cost = results_df["Output Cost ($)"].sum()
total_cost = results_df["Total Cost ($)"].sum()

# Display totals
col1, col2, col3 = st.columns(3)
col1.metric("Total Input Cost", f"${total_input_cost:.2f}")
col2.metric("Total Output Cost", f"${total_output_cost:.2f}")
col3.metric("Total API Cost", f"${total_cost:.2f}")

# Data visualization
st.header("Cost Visualization")

# Cost breakdown by model
fig1, ax1 = plt.subplots(figsize=(10, 6))
models = results_df["Model"]
input_costs = results_df["Input Cost ($)"]
output_costs = results_df["Output Cost ($)"]

x = np.arange(len(models))
width = 0.35

ax1.bar(x - width/2, input_costs, width, label='Input Cost')
ax1.bar(x + width/2, output_costs, width, label='Output Cost')

ax1.set_ylabel('Cost ($)')
ax1.set_title('Cost Breakdown by Model')
ax1.set_xticks(x)
ax1.set_xticklabels(models, rotation=45, ha='right')
ax1.legend()

fig1.tight_layout()
st.pyplot(fig1)

# Percentage of total cost by model
fig2, ax2 = plt.subplots(figsize=(8, 8))
ax2.pie(results_df["Total Cost ($)"], labels=results_df["Model"], autopct='%1.1f%%', startangle=90)
ax2.axis('equal')
ax2.set_title('Percentage of Total Cost by Model')
st.pyplot(fig2)

# Export options
st.header("Export Options")
csv = results_df.to_csv(index=False).encode('utf-8')
st.download_button(
    label="Download Results as CSV",
    data=csv,
    file_name='llm_budget_results.csv',
    mime='text/csv',
)

# Footer
st.markdown("---")
st.markdown("*Note: All costs are estimates based on the provided rates. Actual API costs may vary.*")