Spaces:
Runtime error
Runtime error
Add gradio app for caption scoring
Browse files- app.py +63 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import jax
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
|
| 9 |
+
LOCAL_PATH = snapshot_download("flax-community/clip-spanish")
|
| 10 |
+
sys.path.append(LOCAL_PATH)
|
| 11 |
+
|
| 12 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
| 13 |
+
from test_on_image import prepare_image, prepare_text
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def save_file_to_disk(uplaoded_file):
|
| 17 |
+
temp_file = "/tmp/image.jpeg"
|
| 18 |
+
im = Image.fromarray(uplaoded_file)
|
| 19 |
+
im.save(temp_file)
|
| 20 |
+
# with open(temp_file, "wb") as f:
|
| 21 |
+
# f.write(uploaded_file.getbuffer())
|
| 22 |
+
return temp_file
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def run_inference(image_path, text, model, tokenizer):
|
| 26 |
+
pixel_values = prepare_image(image_path, model)
|
| 27 |
+
input_text = prepare_text(text, tokenizer)
|
| 28 |
+
model_output = model(
|
| 29 |
+
input_text["input_ids"],
|
| 30 |
+
pixel_values,
|
| 31 |
+
attention_mask=input_text["attention_mask"],
|
| 32 |
+
train=False,
|
| 33 |
+
return_dict=True,
|
| 34 |
+
)
|
| 35 |
+
logits = model_output["logits_per_image"]
|
| 36 |
+
score = jax.nn.sigmoid(logits)[0][0]
|
| 37 |
+
return score
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def load_tokenizer_and_model():
|
| 41 |
+
# load the saved model
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 43 |
+
"bertin-project/bertin-roberta-base-spanish"
|
| 44 |
+
)
|
| 45 |
+
model = FlaxHybridCLIP.from_pretrained(LOCAL_PATH)
|
| 46 |
+
return tokenizer, model
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
tokenizer, model = load_tokenizer_and_model()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def score_image_caption_pair(uploaded_file, text_input):
|
| 53 |
+
local_image_path = save_file_to_disk(uploaded_file)
|
| 54 |
+
score = run_inference(
|
| 55 |
+
local_image_path, text_input, model, tokenizer).tolist()
|
| 56 |
+
return {"Score": score}
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
image = gr.inputs.Image(shape=(299, 299))
|
| 60 |
+
iface = gr.Interface(
|
| 61 |
+
fn=score_image_caption_pair, inputs=[image, "text"], outputs="label"
|
| 62 |
+
)
|
| 63 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flax==0.3.4
|
| 2 |
+
gradio==2.2.2
|
| 3 |
+
huggingface-hub==0.0.12
|
| 4 |
+
jax==0.2.17
|
| 5 |
+
streamlit==0.84.1
|
| 6 |
+
torch==1.9.0
|
| 7 |
+
torchvision==0.10.0
|
| 8 |
+
transformers==4.8.2
|
| 9 |
+
watchdog==2.1.3
|