Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
e21873c
1
Parent(s):
43c2b1a
Unselect task datasets will update average and npm
Browse files
app.py
CHANGED
|
@@ -28,7 +28,8 @@ from src.display.utils import (
|
|
| 28 |
ModelType,
|
| 29 |
fields,
|
| 30 |
WeightType,
|
| 31 |
-
Precision
|
|
|
|
| 32 |
)
|
| 33 |
from src.envs import (
|
| 34 |
API,
|
|
@@ -126,6 +127,7 @@ def update_table(
|
|
| 126 |
):
|
| 127 |
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
| 128 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
| 129 |
df = select_columns(filtered_df, columns)
|
| 130 |
return df
|
| 131 |
|
|
@@ -200,6 +202,21 @@ def filter_models(
|
|
| 200 |
|
| 201 |
return filtered_df
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
leaderboard_df = filter_models(
|
| 204 |
df=leaderboard_df,
|
| 205 |
type_query=[t.to_str(" : ") for t in ModelType],
|
|
|
|
| 28 |
ModelType,
|
| 29 |
fields,
|
| 30 |
WeightType,
|
| 31 |
+
Precision,
|
| 32 |
+
Tasks
|
| 33 |
)
|
| 34 |
from src.envs import (
|
| 35 |
API,
|
|
|
|
| 127 |
):
|
| 128 |
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
| 129 |
filtered_df = filter_queries(query, filtered_df)
|
| 130 |
+
filtered_df = update_leaderboard_avg_scores(filtered_df, columns)
|
| 131 |
df = select_columns(filtered_df, columns)
|
| 132 |
return df
|
| 133 |
|
|
|
|
| 202 |
|
| 203 |
return filtered_df
|
| 204 |
|
| 205 |
+
def update_leaderboard_avg_scores(df, columns):
|
| 206 |
+
new_df = df.copy()
|
| 207 |
+
|
| 208 |
+
#update average with tasks in shown columns
|
| 209 |
+
task_columns = []
|
| 210 |
+
task_baseline = []
|
| 211 |
+
for task in Tasks:
|
| 212 |
+
column_name = getattr(AutoEvalColumn, task.name).name
|
| 213 |
+
if column_name in columns:
|
| 214 |
+
task_columns.append(column_name)
|
| 215 |
+
task_baseline.append(task.value.baseline)
|
| 216 |
+
new_df[AutoEvalColumn.average.name] = new_df[task_columns].mean(axis=1).apply(lambda x: round(x, 2))
|
| 217 |
+
new_df[AutoEvalColumn.npm.name] = (((new_df[task_columns] - task_baseline) / [100.0 - t for t in task_baseline]).mean(axis=1) * 100).apply(lambda x: round(x, 2))
|
| 218 |
+
return new_df
|
| 219 |
+
|
| 220 |
leaderboard_df = filter_models(
|
| 221 |
df=leaderboard_df,
|
| 222 |
type_query=[t.to_str(" : ") for t in ModelType],
|