edodso2 commited on
Commit
fa1f9f7
·
1 Parent(s): 662f8fc

Use smaller model

Browse files
Files changed (3) hide show
  1. README.md +3 -1
  2. requirements.txt +3 -0
  3. utils/classify.py +2 -1
README.md CHANGED
@@ -29,4 +29,6 @@ Using a Zero-Shot Classification model rather than a full LLM introduces a flexi
29
 
30
  ## Optimizations
31
 
32
- A custom-trained model would be ideal for a specific task like this.
 
 
 
29
 
30
  ## Optimizations
31
 
32
+ - more faker function mappings. for the current small model, more mappings for faker functions will most likely be needed.
33
+ - custom-trained model. A targeted task like this should use a custom model.
34
+ - custom extensions. For example specify a list of hobbies to randomly select during mock generation.
requirements.txt CHANGED
@@ -5,3 +5,6 @@ faker
5
  torch
6
  jsonschema
7
  gradio
 
 
 
 
5
  torch
6
  jsonschema
7
  gradio
8
+ tiktoken
9
+ sentencepiece
10
+ protobuf
utils/classify.py CHANGED
@@ -18,6 +18,7 @@ faker_functions = {
18
  "email address": fake.email,
19
  "phone number": fake.phone_number,
20
  "street address": fake.street_address,
 
21
  "city name": fake.city,
22
  "state name": fake.state,
23
  "country name": fake.country,
@@ -71,7 +72,7 @@ def get_functions_for_descriptions(descriptions):
71
  dict: Mapping of descriptions to corresponding mock data functions
72
  """
73
  # Create pipeline with Facebook's BART model for zero-shot classification
74
- pipe = pipeline(model="facebook/bart-large-mnli")
75
 
76
  # Call pipeline with descriptions and available Faker function labels
77
  result = pipe(descriptions, candidate_labels=list(faker_functions.keys()))
 
18
  "email address": fake.email,
19
  "phone number": fake.phone_number,
20
  "street address": fake.street_address,
21
+ "street": fake.street_address,
22
  "city name": fake.city,
23
  "state name": fake.state,
24
  "country name": fake.country,
 
72
  dict: Mapping of descriptions to corresponding mock data functions
73
  """
74
  # Create pipeline with Facebook's BART model for zero-shot classification
75
+ pipe = pipeline(model="MoritzLaurer/DeBERTa-v3-xsmall-mnli-fever-anli-ling-binary")
76
 
77
  # Call pipeline with descriptions and available Faker function labels
78
  result = pipe(descriptions, candidate_labels=list(faker_functions.keys()))