File size: 4,806 Bytes
5eaaba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "b4614723-e45f-426e-a545-d0ed9685557d",
   "metadata": {},
   "source": [
    "# Text Generation\n",
    "\n",
    "Experimenting with a Text Generation Pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b249c274-f0ab-43cb-9c44-b4de64045cac",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "09955617-16bb-4d6e-8546-91549c3fe296",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2bbb30f80b274ff0b8c50a075f0cdd73",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some parameters are on the meta device because they were offloaded to the disk.\n",
      "Device set to use mps\n"
     ]
    }
   ],
   "source": [
    "# Use a pre-quantized model from the Hub\n",
    "pipe = pipeline(\n",
    "    \"text-generation\",\n",
    "    model=\"meta-llama/Llama-3.2-3B\",\n",
    "    device_map=\"auto\",\n",
    "    do_sample=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4e7f1608-b823-4cee-ad31-c9a9c5feae4d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "first_name\n",
      "email\n",
      "phone\n"
     ]
    }
   ],
   "source": [
    "def get_faker_mapping(properties):\n",
    "    # Create a structured prompt\n",
    "    prompt = \"\"\"\n",
    "You are a data helper.\n",
    "\n",
    "Function Names:\n",
    "name\n",
    "first_name\n",
    "last_name\n",
    "email\n",
    "phone\n",
    "address\n",
    "city\n",
    "state\n",
    "zip_code\n",
    "country\n",
    "company\n",
    "job_title\n",
    "credit_card_number\n",
    "date_of_birth\n",
    "text\n",
    "random_number\n",
    "\n",
    "EXAMPLE 1:\n",
    "Properties:\n",
    "fullName: Full name of person\n",
    "businessEmail: Business email address\n",
    "phoneNum: US phone number\n",
    "\n",
    "Response:\n",
    "fullName: name\n",
    "businessEmail: email\n",
    "phoneNum: phone\n",
    "\n",
    "EXAMPLE 2:\n",
    "Properties:\n",
    "name: name of person\n",
    "ccn: Credit card number\n",
    "personalPhone: US phone number\n",
    "\n",
    "Response:\n",
    "name: name\n",
    "ccn: credit_card_number\n",
    "personalPhone: phone\n",
    "\n",
    "EXAMPLE 3:\n",
    "Properties:\n",
    "firstName: first name of person\n",
    "city: City of residence\n",
    "personalPhone: US phone number\n",
    "\n",
    "Response:\n",
    "firstName: first_name\n",
    "city: city\n",
    "personalPhone: phone\n",
    "\n",
    "Complete EXAMPLE 4:\n",
    "Properties:\n",
    "\"\"\"\n",
    "    # Add properties to prompt\n",
    "    for prop, desc in properties:\n",
    "        prompt += f\"{prop}: {desc}\\n\"\n",
    "    \n",
    "    prompt += \"\\nResponse:\"\n",
    "    \n",
    "    # Generate response\n",
    "    response = pipe(\n",
    "        prompt,\n",
    "        max_new_tokens=50\n",
    "    )\n",
    "    \n",
    "    result = response[0]['generated_text']\n",
    "    \n",
    "    # Logic to convert to a dict\n",
    "    response_text = result.split(\"Complete EXAMPLE 4:\")[1].split(\"Complete EXAMPLE 5:\")[0].split(\"Response:\")[1].strip()\n",
    "    \n",
    "    return {line.split(\":\", 1)[0].strip(): line.split(\":\", 1)[1].strip() for line in response_text.splitlines() if \":\" in line}\n",
    "    \n",
    "# Example use\n",
    "properties = [\n",
    "    (\"name\", \"users first name\"),\n",
    "    (\"email\", \"Business email address\"),\n",
    "    (\"phone\", \"US phone number\")\n",
    "]\n",
    "\n",
    "result = get_faker_mapping(properties)\n",
    "\n",
    "for key, desc in properties:\n",
    "    print(result.get(key))\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}