File size: 3,960 Bytes
5eaaba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a1c75
5eaaba5
 
 
 
 
 
 
a6a1c75
5eaaba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import json
import gradio as gr
from utils.classify import get_functions_for_descriptions
from utils.extract import extract_descriptions
from utils.fake import generate_mock_data
from utils.validate import validate_schema_structure
from utils.serialize_json import serialize_to_json

# Store globally so we don't have to recalculate if
# the schema has not changed
function_mappings = {}


def process_schema(schema):
    """Process the schema and return either mock data or an error message"""
    global function_mappings

    is_valid, result = validate_schema_structure(schema)

    if not is_valid:
        return (
            None,
            result,  # If invalid this will contain the error message
        )

    if not function_mappings:
        descriptions = extract_descriptions(result)
        function_mappings = get_functions_for_descriptions(descriptions)

    mock_data = generate_mock_data(result, function_mappings)

    mock_json = serialize_to_json(mock_data, pretty=True)

    return mock_json, None


def clear_function_mappings():
    global function_mappings
    function_mappings = {}


# Create a default schema example
default_schema = json.dumps(
    {
        "type": "object",
        "description": "A person object",
        "properties": {
            "first_name": {"type": "string", "description": "The person's first name"},
            "last_name": {"type": "string", "description": "The person's last name"},
            "age": {"type": "integer", "minimum": 18, "maximum": 100},
            "email": {"type": "string"},
            "is_active": {"type": "boolean"},
            "address": {
                "type": "object",
                "properties": {
                    "street": {"type": "string"},
                    "city": {"type": "string"},
                    "zip": {"type": "string"},
                },
            },
        },
        "required": ["first_name", "last_name", "age"],
    },
    indent=2,
)

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as app:
    gr.Markdown("# JSON Schema Mock Data Generator")
    gr.Markdown(
        "Enter a valid JSON schema and generate mock data that conforms to the schema."
    )

    with gr.Row():
        with gr.Column():
            schema_input = gr.Textbox(
                label="JSON Schema",
                value=default_schema,
                lines=15,
                max_lines=15,
                placeholder="Enter your JSON schema here...",
            )

            generate_btn = gr.Button("Generate Mock Data", variant="primary")

        with gr.Column():
            mock_output = gr.Textbox(
                label="Generated Mock JSON", lines=15, max_lines=15, interactive=False
            )

            error_output = gr.Textbox(label="Errors", visible=False, interactive=False)

    def update_output(schema_str):
        mock_data, error = process_schema(schema_str)

        if error:
            return {
                mock_output: None,
                error_output: error,
                error_output: gr.update(visible=True),
            }
        else:
            return {
                mock_output: mock_data,
                error_output: None,
                error_output: gr.update(visible=False),
            }

    schema_input.change(fn=clear_function_mappings, inputs=[], outputs=[])

    generate_btn.click(
        fn=update_output,
        inputs=[schema_input],
        outputs=[mock_output, error_output, error_output],
    )

    gr.Markdown(
        """
    ## Notes
    - Zero Shot Classification will run the first time a mock is generated for a schema. Subsequent generations will be instant.
    - The schema must be valid JSON and comply with JSON Schema Draft 7
    - Required keywords: `type` and `properties` (for object types)
    - Currently Supported types: string, integer, boolean, array, and object
    """
    )

if __name__ == "__main__":
    app.launch()