Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
·
54787fd
1
Parent(s):
c02332f
Update pipeline_semantic_stable_diffusion_img2img_solver.py
Browse files
pipeline_semantic_stable_diffusion_img2img_solver.py
CHANGED
|
@@ -1,33 +1,3 @@
|
|
| 1 |
-
import inspect
|
| 2 |
-
import warnings
|
| 3 |
-
from itertools import repeat
|
| 4 |
-
from typing import Callable, List, Optional, Union
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 8 |
-
|
| 9 |
-
from diffusers.image_processor import VaeImageProcessor
|
| 10 |
-
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 11 |
-
from diffusers.models.attention_processor import AttnProcessor, Attention
|
| 12 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 13 |
-
from diffusers.schedulers import DDIMScheduler
|
| 14 |
-
from scheduling_dpmsolver_multistep_inject import DPMSolverMultistepSchedulerInject
|
| 15 |
-
# from diffusers.utils import logging, randn_tensor
|
| 16 |
-
from diffusers.utils import logging
|
| 17 |
-
from diffusers.utils.torch_utils import randn_tensor
|
| 18 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 19 |
-
from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipelineOutput
|
| 20 |
-
|
| 21 |
-
import numpy as np
|
| 22 |
-
from PIL import Image
|
| 23 |
-
from tqdm import tqdm
|
| 24 |
-
import torch.nn.functional as F
|
| 25 |
-
import math
|
| 26 |
-
from collections.abc import Iterable
|
| 27 |
-
|
| 28 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 29 |
-
|
| 30 |
-
|
| 31 |
class AttentionStore():
|
| 32 |
@staticmethod
|
| 33 |
def get_empty_store():
|
|
@@ -48,6 +18,7 @@ class AttentionStore():
|
|
| 48 |
|
| 49 |
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
| 50 |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
|
|
|
| 51 |
self.step_store[key].append(attn)
|
| 52 |
|
| 53 |
def between_steps(self, store_step=True):
|
|
@@ -432,10 +403,10 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 432 |
|
| 433 |
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 434 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents):
|
| 435 |
-
#
|
| 436 |
|
| 437 |
-
#
|
| 438 |
-
#
|
| 439 |
|
| 440 |
latents = latents.to(device)
|
| 441 |
|
|
@@ -469,16 +440,8 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 469 |
@torch.no_grad()
|
| 470 |
def __call__(
|
| 471 |
self,
|
| 472 |
-
|
| 473 |
-
height: Optional[int] = None,
|
| 474 |
-
width: Optional[int] = None,
|
| 475 |
-
# num_inference_steps: int = 50,
|
| 476 |
-
guidance_scale: float = 7.5,
|
| 477 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 478 |
-
# num_images_per_prompt: int = 1,
|
| 479 |
-
eta: float = 1.0,
|
| 480 |
-
# generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 481 |
-
# latents: Optional[torch.FloatTensor] = None,
|
| 482 |
output_type: Optional[str] = "pil",
|
| 483 |
return_dict: bool = True,
|
| 484 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
@@ -491,7 +454,6 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 491 |
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
|
| 492 |
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
|
| 493 |
user_mask: Optional[torch.FloatTensor] = None,
|
| 494 |
-
|
| 495 |
edit_weights: Optional[List[float]] = None,
|
| 496 |
sem_guidance: Optional[List[torch.Tensor]] = None,
|
| 497 |
verbose=True,
|
|
@@ -502,7 +464,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 502 |
use_intersect_mask: bool = False,
|
| 503 |
init_latents = None,
|
| 504 |
zs = None,
|
| 505 |
-
|
| 506 |
):
|
| 507 |
r"""
|
| 508 |
Function invoked when calling the pipeline for generation.
|
|
@@ -597,7 +559,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 597 |
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
| 598 |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
| 599 |
"""
|
| 600 |
-
|
| 601 |
num_images_per_prompt = 1
|
| 602 |
# latents = self.init_latents
|
| 603 |
latents = init_latents
|
|
@@ -612,18 +574,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 612 |
if use_cross_attn_mask:
|
| 613 |
self.smoothing = GaussianSmoothing(self.device)
|
| 614 |
|
| 615 |
-
|
| 616 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 617 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 618 |
-
|
| 619 |
-
# 1. Check inputs. Raise error if not correct
|
| 620 |
-
self.check_inputs(prompt, height, width, callback_steps)
|
| 621 |
-
|
| 622 |
-
org_prompt = prompt
|
| 623 |
-
if isinstance(prompt, list):
|
| 624 |
-
assert len(prompt) == self.batch_size
|
| 625 |
-
elif isinstance(prompt, str):
|
| 626 |
-
prompt = list(repeat(prompt, self.batch_size))
|
| 627 |
|
| 628 |
# 2. Define call parameters
|
| 629 |
batch_size = self.batch_size
|
|
@@ -640,35 +591,6 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 640 |
self.enabled_editing_prompts = 0
|
| 641 |
enable_edit_guidance = False
|
| 642 |
|
| 643 |
-
# get prompt text embeddings
|
| 644 |
-
text_inputs = self.tokenizer(
|
| 645 |
-
prompt,
|
| 646 |
-
padding="max_length",
|
| 647 |
-
max_length=self.tokenizer.model_max_length,
|
| 648 |
-
truncation=True,
|
| 649 |
-
return_tensors="pt",
|
| 650 |
-
)
|
| 651 |
-
text_input_ids = text_inputs.input_ids
|
| 652 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 653 |
-
|
| 654 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 655 |
-
text_input_ids, untruncated_ids
|
| 656 |
-
):
|
| 657 |
-
removed_text = self.tokenizer.batch_decode(
|
| 658 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
| 659 |
-
)
|
| 660 |
-
logger.warning(
|
| 661 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 662 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 663 |
-
)
|
| 664 |
-
|
| 665 |
-
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
| 666 |
-
|
| 667 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 668 |
-
bs_embed, seq_len, _ = text_embeddings.shape
|
| 669 |
-
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 670 |
-
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 671 |
-
|
| 672 |
if enable_edit_guidance:
|
| 673 |
# get safety text embeddings
|
| 674 |
if editing_prompt_embeddings is None:
|
|
@@ -711,54 +633,47 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 711 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 712 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 713 |
# corresponds to doing no classifier free guidance.
|
| 714 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
| 715 |
# get unconditional embeddings for classifier free guidance
|
| 716 |
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
)
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
elif batch_size != len(negative_prompt):
|
| 729 |
-
raise ValueError(
|
| 730 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 731 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 732 |
-
" the batch size of `prompt`."
|
| 733 |
-
)
|
| 734 |
-
else:
|
| 735 |
-
uncond_tokens = negative_prompt
|
| 736 |
-
|
| 737 |
-
max_length = text_input_ids.shape[-1]
|
| 738 |
-
uncond_input = self.tokenizer(
|
| 739 |
-
uncond_tokens,
|
| 740 |
-
padding="max_length",
|
| 741 |
-
max_length=max_length,
|
| 742 |
-
truncation=True,
|
| 743 |
-
return_tensors="pt",
|
| 744 |
)
|
| 745 |
-
|
|
|
|
| 746 |
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 762 |
|
| 763 |
# 4. Prepare timesteps
|
| 764 |
#self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
|
@@ -776,8 +691,8 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 776 |
latents = self.prepare_latents(
|
| 777 |
batch_size * num_images_per_prompt,
|
| 778 |
num_channels_latents,
|
| 779 |
-
|
| 780 |
-
|
| 781 |
text_embeddings.dtype,
|
| 782 |
self.device,
|
| 783 |
latents,
|
|
@@ -786,21 +701,16 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 786 |
# 6. Prepare extra step kwargs.
|
| 787 |
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
|
| 788 |
|
| 789 |
-
|
| 790 |
self.uncond_estimates = None
|
| 791 |
-
self.text_estimates = None
|
| 792 |
self.edit_estimates = None
|
| 793 |
self.sem_guidance = None
|
| 794 |
self.activation_mask = None
|
| 795 |
|
| 796 |
for i, t in enumerate(self.progress_bar(timesteps, verbose=verbose)):
|
| 797 |
-
idx = t_to_idx[int(t)]
|
| 798 |
-
|
| 799 |
-
|
| 800 |
# expand the latents if we are doing classifier free guidance
|
| 801 |
|
| 802 |
-
if
|
| 803 |
-
latent_model_input = torch.cat([latents] * (
|
| 804 |
else:
|
| 805 |
latent_model_input = latents
|
| 806 |
|
|
@@ -811,254 +721,219 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 811 |
# predict the noise residual
|
| 812 |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample
|
| 813 |
|
| 814 |
-
# perform guidance
|
| 815 |
-
if do_classifier_free_guidance:
|
| 816 |
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
|
| 821 |
-
|
| 822 |
-
|
| 823 |
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
|
| 832 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 833 |
|
| 834 |
-
if sem_guidance is
|
| 835 |
-
|
| 836 |
-
noise_guidance = noise_guidance + edit_guidance
|
| 837 |
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 846 |
)
|
|
|
|
| 847 |
|
| 848 |
-
|
| 849 |
-
|
|
|
|
| 850 |
|
| 851 |
-
|
| 852 |
-
(
|
| 853 |
-
|
| 854 |
-
dtype=noise_guidance.dtype,
|
| 855 |
-
)
|
| 856 |
-
noise_guidance_edit = torch.zeros(
|
| 857 |
-
(len(noise_pred_edit_concepts), *noise_guidance.shape),
|
| 858 |
-
device=self.device,
|
| 859 |
-
dtype=noise_guidance.dtype,
|
| 860 |
-
)
|
| 861 |
-
# noise_guidance_edit = torch.zeros_like(noise_guidance)
|
| 862 |
-
warmup_inds = []
|
| 863 |
-
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
|
| 864 |
-
self.edit_estimates[i, c] = noise_pred_edit_concept
|
| 865 |
-
if isinstance(edit_guidance_scale, list):
|
| 866 |
-
edit_guidance_scale_c = edit_guidance_scale[c]
|
| 867 |
-
else:
|
| 868 |
-
edit_guidance_scale_c = edit_guidance_scale
|
| 869 |
-
|
| 870 |
-
if isinstance(edit_threshold, list):
|
| 871 |
-
edit_threshold_c = edit_threshold[c]
|
| 872 |
-
else:
|
| 873 |
-
edit_threshold_c = edit_threshold
|
| 874 |
-
if isinstance(reverse_editing_direction, list):
|
| 875 |
-
reverse_editing_direction_c = reverse_editing_direction[c]
|
| 876 |
-
else:
|
| 877 |
-
reverse_editing_direction_c = reverse_editing_direction
|
| 878 |
-
if edit_weights:
|
| 879 |
-
edit_weight_c = edit_weights[c]
|
| 880 |
-
else:
|
| 881 |
-
edit_weight_c = 1.0
|
| 882 |
-
if isinstance(edit_warmup_steps, list):
|
| 883 |
-
edit_warmup_steps_c = edit_warmup_steps[c]
|
| 884 |
-
else:
|
| 885 |
-
edit_warmup_steps_c = edit_warmup_steps
|
| 886 |
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
edit_cooldown_steps_c = i + 1
|
| 891 |
else:
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
res=16,
|
| 918 |
-
from_where=["up", "down"],
|
| 919 |
-
is_cross=True,
|
| 920 |
-
select=self.text_cross_attention_maps.index(editing_prompt[c]),
|
| 921 |
)
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
if
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
# torch.quantile function expects float32
|
| 955 |
-
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
| 956 |
-
tmp = torch.quantile(
|
| 957 |
-
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
| 958 |
-
edit_threshold_c,
|
| 959 |
-
dim=2,
|
| 960 |
-
keepdim=False,
|
| 961 |
-
)
|
| 962 |
-
else:
|
| 963 |
-
tmp = torch.quantile(
|
| 964 |
-
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
| 965 |
-
edit_threshold_c,
|
| 966 |
-
dim=2,
|
| 967 |
-
keepdim=False,
|
| 968 |
-
).to(noise_guidance_edit_tmp_quantile.dtype)
|
| 969 |
-
|
| 970 |
-
intersect_mask = torch.where(
|
| 971 |
-
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 972 |
-
torch.ones_like(noise_guidance_edit_tmp),
|
| 973 |
-
torch.zeros_like(noise_guidance_edit_tmp),
|
| 974 |
-
) * attn_mask
|
| 975 |
-
|
| 976 |
-
self.activation_mask[i, c] = intersect_mask.detach().cpu()
|
| 977 |
-
|
| 978 |
-
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
|
| 979 |
-
|
| 980 |
-
elif not use_cross_attn_mask:
|
| 981 |
-
# calculate quantile
|
| 982 |
-
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
| 983 |
-
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1,
|
| 984 |
-
keepdim=True)
|
| 985 |
-
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
|
| 986 |
-
|
| 987 |
-
# torch.quantile function expects float32
|
| 988 |
-
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
| 989 |
-
tmp = torch.quantile(
|
| 990 |
-
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
| 991 |
-
edit_threshold_c,
|
| 992 |
-
dim=2,
|
| 993 |
-
keepdim=False,
|
| 994 |
-
)
|
| 995 |
-
else:
|
| 996 |
-
tmp = torch.quantile(
|
| 997 |
-
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
| 998 |
-
edit_threshold_c,
|
| 999 |
-
dim=2,
|
| 1000 |
-
keepdim=False,
|
| 1001 |
-
).to(noise_guidance_edit_tmp_quantile.dtype)
|
| 1002 |
-
|
| 1003 |
-
self.activation_mask[i, c] = torch.where(
|
| 1004 |
-
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 1005 |
-
torch.ones_like(noise_guidance_edit_tmp),
|
| 1006 |
-
torch.zeros_like(noise_guidance_edit_tmp),
|
| 1007 |
-
).detach().cpu()
|
| 1008 |
-
|
| 1009 |
-
noise_guidance_edit_tmp = torch.where(
|
| 1010 |
-
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 1011 |
-
noise_guidance_edit_tmp,
|
| 1012 |
-
torch.zeros_like(noise_guidance_edit_tmp),
|
| 1013 |
)
|
| 1014 |
-
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
noise_guidance_edit_tmp = torch.einsum(
|
| 1033 |
-
"cb,cbijk->bijk", concept_weights_tmp, noise_guidance_edit_tmp
|
| 1034 |
)
|
| 1035 |
-
noise_guidance_edit_tmp = noise_guidance_edit_tmp
|
| 1036 |
-
noise_guidance = noise_guidance + noise_guidance_edit_tmp
|
| 1037 |
|
| 1038 |
-
|
| 1039 |
|
| 1040 |
-
|
| 1041 |
-
|
| 1042 |
-
|
| 1043 |
-
|
| 1044 |
-
|
| 1045 |
-
concept_weights = torch.where(
|
| 1046 |
-
concept_weights < 0, torch.zeros_like(concept_weights), concept_weights
|
| 1047 |
-
)
|
| 1048 |
-
|
| 1049 |
-
concept_weights = torch.nan_to_num(concept_weights)
|
| 1050 |
-
|
| 1051 |
-
noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit)
|
| 1052 |
|
| 1053 |
-
|
| 1054 |
|
| 1055 |
-
|
| 1056 |
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
|
| 1060 |
|
| 1061 |
-
|
| 1062 |
|
| 1063 |
# compute the previous noisy sample x_t -> x_t-1
|
| 1064 |
if use_ddpm:
|
|
@@ -1066,7 +941,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 1066 |
latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs[idx],
|
| 1067 |
**extra_step_kwargs).prev_sample
|
| 1068 |
|
| 1069 |
-
else:
|
| 1070 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 1071 |
|
| 1072 |
# step callback
|
|
@@ -1126,7 +1001,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 1126 |
source_prompt: str = "",
|
| 1127 |
source_guidance_scale=3.5,
|
| 1128 |
num_inversion_steps: int = 30,
|
| 1129 |
-
skip:
|
| 1130 |
eta: float = 1.0,
|
| 1131 |
generator: Optional[torch.Generator] = None,
|
| 1132 |
verbose=True,
|
|
@@ -1143,7 +1018,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 1143 |
# self.eta = eta
|
| 1144 |
# assert (self.eta > 0)
|
| 1145 |
skip = skip/100
|
| 1146 |
-
|
| 1147 |
train_steps = self.scheduler.config.num_train_timesteps
|
| 1148 |
timesteps = torch.from_numpy(
|
| 1149 |
np.linspace(train_steps - skip * train_steps - 1, 1, num_inversion_steps).astype(np.int64)).to(self.device)
|
|
@@ -1152,10 +1027,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 1152 |
self.num_inversion_steps = timesteps.shape[0]
|
| 1153 |
self.scheduler.num_inference_steps = timesteps.shape[0]
|
| 1154 |
self.scheduler.timesteps = timesteps
|
| 1155 |
-
|
| 1156 |
-
# Reset attn processor, we do not want to store attn maps during inversion
|
| 1157 |
-
# self.unet.set_default_attn_processor()
|
| 1158 |
-
self.unet.set_attn_processor(AttnProcessor())
|
| 1159 |
|
| 1160 |
# 1. get embeddings
|
| 1161 |
|
|
@@ -1171,6 +1043,7 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 1171 |
# autoencoder reconstruction
|
| 1172 |
# image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 1173 |
# image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
|
|
|
|
| 1174 |
# 3. find zs and xts
|
| 1175 |
variance_noise_shape = (
|
| 1176 |
self.num_inversion_steps,
|
|
@@ -1220,8 +1093,8 @@ class SemanticStableDiffusionImg2ImgPipeline_DPMSolver(DiffusionPipeline):
|
|
| 1220 |
# self.zs = zs
|
| 1221 |
|
| 1222 |
|
|
|
|
| 1223 |
return zs, xts
|
| 1224 |
-
# return zs, xts, image_rec
|
| 1225 |
|
| 1226 |
@torch.no_grad()
|
| 1227 |
def encode_image(self, image_path, dtype=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
class AttentionStore():
|
| 2 |
@staticmethod
|
| 3 |
def get_empty_store():
|
|
|
|
| 18 |
|
| 19 |
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
| 20 |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
| 21 |
+
|
| 22 |
self.step_store[key].append(attn)
|
| 23 |
|
| 24 |
def between_steps(self, store_step=True):
|
|
|
|
| 403 |
|
| 404 |
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 405 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents):
|
| 406 |
+
#shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 407 |
|
| 408 |
+
#if latents.shape != shape:
|
| 409 |
+
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
| 410 |
|
| 411 |
latents = latents.to(device)
|
| 412 |
|
|
|
|
| 440 |
@torch.no_grad()
|
| 441 |
def __call__(
|
| 442 |
self,
|
| 443 |
+
eta: Optional[float] = 1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
output_type: Optional[str] = "pil",
|
| 446 |
return_dict: bool = True,
|
| 447 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
|
| 454 |
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
|
| 455 |
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
|
| 456 |
user_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
| 457 |
edit_weights: Optional[List[float]] = None,
|
| 458 |
sem_guidance: Optional[List[torch.Tensor]] = None,
|
| 459 |
verbose=True,
|
|
|
|
| 464 |
use_intersect_mask: bool = False,
|
| 465 |
init_latents = None,
|
| 466 |
zs = None,
|
| 467 |
+
|
| 468 |
):
|
| 469 |
r"""
|
| 470 |
Function invoked when calling the pipeline for generation.
|
|
|
|
| 559 |
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
| 560 |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
| 561 |
"""
|
| 562 |
+
eta = 1.0
|
| 563 |
num_images_per_prompt = 1
|
| 564 |
# latents = self.init_latents
|
| 565 |
latents = init_latents
|
|
|
|
| 574 |
if use_cross_attn_mask:
|
| 575 |
self.smoothing = GaussianSmoothing(self.device)
|
| 576 |
|
| 577 |
+
org_prompt = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
|
| 579 |
# 2. Define call parameters
|
| 580 |
batch_size = self.batch_size
|
|
|
|
| 591 |
self.enabled_editing_prompts = 0
|
| 592 |
enable_edit_guidance = False
|
| 593 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
if enable_edit_guidance:
|
| 595 |
# get safety text embeddings
|
| 596 |
if editing_prompt_embeddings is None:
|
|
|
|
| 633 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 634 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 635 |
# corresponds to doing no classifier free guidance.
|
|
|
|
| 636 |
# get unconditional embeddings for classifier free guidance
|
| 637 |
|
| 638 |
+
|
| 639 |
+
uncond_tokens: List[str]
|
| 640 |
+
if negative_prompt is None:
|
| 641 |
+
uncond_tokens = [""]
|
| 642 |
+
elif isinstance(negative_prompt, str):
|
| 643 |
+
uncond_tokens = [negative_prompt]
|
| 644 |
+
elif batch_size != len(negative_prompt):
|
| 645 |
+
raise ValueError(
|
| 646 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 647 |
+
f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 648 |
+
" the batch size of `prompt`."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
)
|
| 650 |
+
else:
|
| 651 |
+
uncond_tokens = negative_prompt
|
| 652 |
|
| 653 |
+
max_length = self.tokenizer.model_max_length
|
| 654 |
+
uncond_input = self.tokenizer(
|
| 655 |
+
uncond_tokens,
|
| 656 |
+
padding="max_length",
|
| 657 |
+
max_length=max_length,
|
| 658 |
+
truncation=True,
|
| 659 |
+
return_tensors="pt",
|
| 660 |
+
)
|
| 661 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
| 662 |
|
| 663 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 664 |
+
seq_len = uncond_embeddings.shape[1]
|
| 665 |
+
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
| 666 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 667 |
+
|
| 668 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 669 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 670 |
+
# to avoid doing two forward passes
|
| 671 |
+
if enable_edit_guidance:
|
| 672 |
+
text_embeddings = torch.cat([uncond_embeddings, edit_concepts])
|
| 673 |
+
self.text_cross_attention_maps = \
|
| 674 |
+
([editing_prompt] if isinstance(editing_prompt, str) else editing_prompt)
|
| 675 |
+
else:
|
| 676 |
+
text_embeddings = torch.cat([uncond_embeddings])
|
| 677 |
|
| 678 |
# 4. Prepare timesteps
|
| 679 |
#self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
|
|
|
| 691 |
latents = self.prepare_latents(
|
| 692 |
batch_size * num_images_per_prompt,
|
| 693 |
num_channels_latents,
|
| 694 |
+
None,
|
| 695 |
+
None,
|
| 696 |
text_embeddings.dtype,
|
| 697 |
self.device,
|
| 698 |
latents,
|
|
|
|
| 701 |
# 6. Prepare extra step kwargs.
|
| 702 |
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
|
| 703 |
|
|
|
|
| 704 |
self.uncond_estimates = None
|
|
|
|
| 705 |
self.edit_estimates = None
|
| 706 |
self.sem_guidance = None
|
| 707 |
self.activation_mask = None
|
| 708 |
|
| 709 |
for i, t in enumerate(self.progress_bar(timesteps, verbose=verbose)):
|
|
|
|
|
|
|
|
|
|
| 710 |
# expand the latents if we are doing classifier free guidance
|
| 711 |
|
| 712 |
+
if enable_edit_guidance:
|
| 713 |
+
latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
|
| 714 |
else:
|
| 715 |
latent_model_input = latents
|
| 716 |
|
|
|
|
| 721 |
# predict the noise residual
|
| 722 |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample
|
| 723 |
|
|
|
|
|
|
|
| 724 |
|
| 725 |
+
noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64]
|
| 726 |
+
noise_pred_uncond = noise_pred_out[0]
|
| 727 |
+
noise_pred_edit_concepts = noise_pred_out[1:]
|
| 728 |
|
| 729 |
+
# default text guidance
|
| 730 |
+
noise_guidance = torch.zeros_like(noise_pred_uncond)
|
| 731 |
|
| 732 |
+
if self.uncond_estimates is None:
|
| 733 |
+
self.uncond_estimates = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
|
| 734 |
+
self.uncond_estimates[i] = noise_pred_uncond.detach().cpu()
|
| 735 |
|
| 736 |
+
if sem_guidance is not None and len(sem_guidance) > i:
|
| 737 |
+
edit_guidance = sem_guidance[i].to(self.device)
|
| 738 |
+
noise_guidance = noise_guidance + edit_guidance
|
| 739 |
|
| 740 |
+
elif enable_edit_guidance:
|
| 741 |
+
if self.activation_mask is None:
|
| 742 |
+
self.activation_mask = torch.zeros(
|
| 743 |
+
(len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
|
| 744 |
+
)
|
| 745 |
+
if self.edit_estimates is None and enable_edit_guidance:
|
| 746 |
+
self.edit_estimates = torch.zeros(
|
| 747 |
+
(len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
|
| 748 |
+
)
|
| 749 |
|
| 750 |
+
if self.sem_guidance is None:
|
| 751 |
+
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
|
|
|
|
| 752 |
|
| 753 |
+
concept_weights = torch.zeros(
|
| 754 |
+
(len(noise_pred_edit_concepts), noise_guidance.shape[0]),
|
| 755 |
+
device=self.device,
|
| 756 |
+
dtype=noise_guidance.dtype,
|
| 757 |
+
)
|
| 758 |
+
noise_guidance_edit = torch.zeros(
|
| 759 |
+
(len(noise_pred_edit_concepts), *noise_guidance.shape),
|
| 760 |
+
device=self.device,
|
| 761 |
+
dtype=noise_guidance.dtype,
|
| 762 |
+
)
|
| 763 |
+
warmup_inds = []
|
| 764 |
+
# noise_guidance_edit = torch.zeros_like(noise_guidance)
|
| 765 |
+
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
|
| 766 |
+
self.edit_estimates[i, c] = noise_pred_edit_concept
|
| 767 |
+
if isinstance(edit_warmup_steps, list):
|
| 768 |
+
edit_warmup_steps_c = edit_warmup_steps[c]
|
| 769 |
+
else:
|
| 770 |
+
edit_warmup_steps_c = edit_warmup_steps
|
| 771 |
+
if i >= edit_warmup_steps_c:
|
| 772 |
+
warmup_inds.append(c)
|
| 773 |
+
else:
|
| 774 |
+
continue
|
| 775 |
+
|
| 776 |
+
if isinstance(edit_guidance_scale, list):
|
| 777 |
+
edit_guidance_scale_c = edit_guidance_scale[c]
|
| 778 |
+
else:
|
| 779 |
+
edit_guidance_scale_c = edit_guidance_scale
|
| 780 |
+
|
| 781 |
+
if isinstance(edit_threshold, list):
|
| 782 |
+
edit_threshold_c = edit_threshold[c]
|
| 783 |
+
else:
|
| 784 |
+
edit_threshold_c = edit_threshold
|
| 785 |
+
if isinstance(reverse_editing_direction, list):
|
| 786 |
+
reverse_editing_direction_c = reverse_editing_direction[c]
|
| 787 |
+
else:
|
| 788 |
+
reverse_editing_direction_c = reverse_editing_direction
|
| 789 |
+
if edit_weights:
|
| 790 |
+
edit_weight_c = edit_weights[c]
|
| 791 |
+
else:
|
| 792 |
+
edit_weight_c = 1.0
|
| 793 |
+
|
| 794 |
+
if isinstance(edit_cooldown_steps, list):
|
| 795 |
+
edit_cooldown_steps_c = edit_cooldown_steps[c]
|
| 796 |
+
elif edit_cooldown_steps is None:
|
| 797 |
+
edit_cooldown_steps_c = i + 1
|
| 798 |
+
else:
|
| 799 |
+
edit_cooldown_steps_c = edit_cooldown_steps
|
| 800 |
+
|
| 801 |
+
if i >= edit_cooldown_steps_c:
|
| 802 |
+
noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept)
|
| 803 |
+
continue
|
| 804 |
+
|
| 805 |
+
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
|
| 806 |
+
# tmp_weights = (noise_pred_text - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
| 807 |
+
tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
| 808 |
+
|
| 809 |
+
tmp_weights = torch.full_like(tmp_weights, edit_weight_c) # * (1 / enabled_editing_prompts)
|
| 810 |
+
if reverse_editing_direction_c:
|
| 811 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
|
| 812 |
+
concept_weights[c, :] = tmp_weights
|
| 813 |
+
|
| 814 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
| 815 |
+
|
| 816 |
+
if user_mask is not None:
|
| 817 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
|
| 818 |
+
|
| 819 |
+
if use_cross_attn_mask:
|
| 820 |
+
out = self.attention_store.aggregate_attention(
|
| 821 |
+
attention_maps=self.attention_store.step_store,
|
| 822 |
+
prompts=self.text_cross_attention_maps,
|
| 823 |
+
res=16,
|
| 824 |
+
from_where=["up", "down"],
|
| 825 |
+
is_cross=True,
|
| 826 |
+
select=self.text_cross_attention_maps.index(editing_prompt[c]),
|
| 827 |
)
|
| 828 |
+
attn_map = out[:, :, :, 1:1 + num_edit_tokens[c]] # 0 -> startoftext
|
| 829 |
|
| 830 |
+
# average over all tokens
|
| 831 |
+
assert (attn_map.shape[3] == num_edit_tokens[c])
|
| 832 |
+
attn_map = torch.sum(attn_map, dim=3)
|
| 833 |
|
| 834 |
+
# gaussian_smoothing
|
| 835 |
+
attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
|
| 836 |
+
attn_map = self.smoothing(attn_map).squeeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 837 |
|
| 838 |
+
# create binary mask
|
| 839 |
+
if attn_map.dtype == torch.float32:
|
| 840 |
+
tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
|
|
|
|
| 841 |
else:
|
| 842 |
+
tmp = torch.quantile(attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1).to(attn_map.dtype)
|
| 843 |
+
attn_mask = torch.where(attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1,16,16), 1.0, 0.0)
|
| 844 |
+
|
| 845 |
+
# resolution must match latent space dimension
|
| 846 |
+
attn_mask = F.interpolate(
|
| 847 |
+
attn_mask.unsqueeze(1),
|
| 848 |
+
noise_guidance_edit_tmp.shape[-2:] # 64,64
|
| 849 |
+
).repeat(1, 4, 1, 1)
|
| 850 |
+
self.activation_mask[i, c] = attn_mask.detach().cpu()
|
| 851 |
+
if not use_intersect_mask:
|
| 852 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
|
| 853 |
+
|
| 854 |
+
if use_intersect_mask:
|
| 855 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
| 856 |
+
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1,
|
| 857 |
+
keepdim=True)
|
| 858 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
|
| 859 |
+
|
| 860 |
+
# torch.quantile function expects float32
|
| 861 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
| 862 |
+
tmp = torch.quantile(
|
| 863 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
| 864 |
+
edit_threshold_c,
|
| 865 |
+
dim=2,
|
| 866 |
+
keepdim=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 867 |
)
|
| 868 |
+
else:
|
| 869 |
+
tmp = torch.quantile(
|
| 870 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
| 871 |
+
edit_threshold_c,
|
| 872 |
+
dim=2,
|
| 873 |
+
keepdim=False,
|
| 874 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
| 875 |
+
|
| 876 |
+
intersect_mask = torch.where(
|
| 877 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 878 |
+
torch.ones_like(noise_guidance_edit_tmp),
|
| 879 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
| 880 |
+
) * attn_mask
|
| 881 |
+
|
| 882 |
+
self.activation_mask[i, c] = intersect_mask.detach().cpu()
|
| 883 |
+
|
| 884 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
|
| 885 |
+
|
| 886 |
+
elif not use_cross_attn_mask:
|
| 887 |
+
# calculate quantile
|
| 888 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
| 889 |
+
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1,
|
| 890 |
+
keepdim=True)
|
| 891 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
|
| 892 |
+
|
| 893 |
+
# torch.quantile function expects float32
|
| 894 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
| 895 |
+
tmp = torch.quantile(
|
| 896 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
| 897 |
+
edit_threshold_c,
|
| 898 |
+
dim=2,
|
| 899 |
+
keepdim=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
)
|
| 901 |
+
else:
|
| 902 |
+
tmp = torch.quantile(
|
| 903 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
| 904 |
+
edit_threshold_c,
|
| 905 |
+
dim=2,
|
| 906 |
+
keepdim=False,
|
| 907 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
| 908 |
+
|
| 909 |
+
self.activation_mask[i, c] = torch.where(
|
| 910 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 911 |
+
torch.ones_like(noise_guidance_edit_tmp),
|
| 912 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
| 913 |
+
).detach().cpu()
|
| 914 |
+
|
| 915 |
+
noise_guidance_edit_tmp = torch.where(
|
| 916 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
| 917 |
+
noise_guidance_edit_tmp,
|
| 918 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
|
|
|
|
|
|
| 919 |
)
|
|
|
|
|
|
|
| 920 |
|
| 921 |
+
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
| 922 |
|
| 923 |
+
warmup_inds = torch.tensor(warmup_inds).to(self.device)
|
| 924 |
+
concept_weights = torch.index_select(concept_weights, 0, warmup_inds)
|
| 925 |
+
concept_weights = torch.where(
|
| 926 |
+
concept_weights < 0, torch.zeros_like(concept_weights), concept_weights
|
| 927 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 928 |
|
| 929 |
+
concept_weights = torch.nan_to_num(concept_weights)
|
| 930 |
|
| 931 |
+
noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit)
|
| 932 |
|
| 933 |
+
noise_guidance = noise_guidance + noise_guidance_edit
|
| 934 |
+
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
|
|
|
|
| 935 |
|
| 936 |
+
noise_pred = noise_pred_uncond + noise_guidance
|
| 937 |
|
| 938 |
# compute the previous noisy sample x_t -> x_t-1
|
| 939 |
if use_ddpm:
|
|
|
|
| 941 |
latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs[idx],
|
| 942 |
**extra_step_kwargs).prev_sample
|
| 943 |
|
| 944 |
+
else: # if not use_ddpm:
|
| 945 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 946 |
|
| 947 |
# step callback
|
|
|
|
| 1001 |
source_prompt: str = "",
|
| 1002 |
source_guidance_scale=3.5,
|
| 1003 |
num_inversion_steps: int = 30,
|
| 1004 |
+
skip: int = 15,
|
| 1005 |
eta: float = 1.0,
|
| 1006 |
generator: Optional[torch.Generator] = None,
|
| 1007 |
verbose=True,
|
|
|
|
| 1018 |
# self.eta = eta
|
| 1019 |
# assert (self.eta > 0)
|
| 1020 |
skip = skip/100
|
| 1021 |
+
|
| 1022 |
train_steps = self.scheduler.config.num_train_timesteps
|
| 1023 |
timesteps = torch.from_numpy(
|
| 1024 |
np.linspace(train_steps - skip * train_steps - 1, 1, num_inversion_steps).astype(np.int64)).to(self.device)
|
|
|
|
| 1027 |
self.num_inversion_steps = timesteps.shape[0]
|
| 1028 |
self.scheduler.num_inference_steps = timesteps.shape[0]
|
| 1029 |
self.scheduler.timesteps = timesteps
|
| 1030 |
+
|
|
|
|
|
|
|
|
|
|
| 1031 |
|
| 1032 |
# 1. get embeddings
|
| 1033 |
|
|
|
|
| 1043 |
# autoencoder reconstruction
|
| 1044 |
# image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 1045 |
# image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
|
| 1046 |
+
|
| 1047 |
# 3. find zs and xts
|
| 1048 |
variance_noise_shape = (
|
| 1049 |
self.num_inversion_steps,
|
|
|
|
| 1093 |
# self.zs = zs
|
| 1094 |
|
| 1095 |
|
| 1096 |
+
|
| 1097 |
return zs, xts
|
|
|
|
| 1098 |
|
| 1099 |
@torch.no_grad()
|
| 1100 |
def encode_image(self, image_path, dtype=None):
|