File size: 29,499 Bytes
bf6c3c2 c9f62fe bf6c3c2 c9f62fe bf6c3c2 c9f62fe bf6c3c2 c9f62fe bf6c3c2 c9f62fe bf6c3c2 c9f62fe bf6c3c2 c9f62fe bf6c3c2 c9f62fe bf6c3c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 |
import logging
import os
import shutil
import subprocess
from collections import Counter
from pathlib import Path
from typing import Any, Optional, OrderedDict
import cv2
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torchvision
import torchvision.models as models
from PIL import Image
from pytorch_metric_learning.utils.common_functions import logging
from pytorch_metric_learning.utils.inference import InferenceModel
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.transforms import v2
from ultralytics import YOLO
# TODO: move metric learning functions into their own namespace
def sample_chips_from_bearid(
bear_id: str,
df_split: pd.DataFrame,
n: int = 4,
) -> list[Path]:
xs = df_split[df_split["bear_id"] == bear_id].sample(n=n)["path"].tolist()
return [Path(x) for x in xs]
def make_indexed_samples(
bear_ids: list[str],
df_split: pd.DataFrame,
n: int = 4,
) -> dict[str, list[Path]]:
return {
bear_id: sample_chips_from_bearid(bear_id=bear_id, df_split=df_split, n=n)
for bear_id in bear_ids
}
def _aux_get_k_nearest_individuals(
model: InferenceModel,
k_neighbors: int,
k_individuals: int,
query,
id_to_label: dict,
dataset: Dataset,
) -> dict:
"""Auxiliary helper function to get k nearest individuals.
Returns a dict with the following keys:
- k_neighbors: int - number of neighbors the KNN search extends to in order to find at least k_individuals
- dataset_indices: list[int] - list of indices to call get_item on the dataset
- dataset_labels: list[int] - labels of the dataset for the given dataset_indices
- dataset_images: list[torch.tensor] - chips of the bears
- distances: list[float] - distances from the query
Note: it can return more than k_individuals as it extends progressively the
KNN search to find at least k_individuals.
"""
assert k_individuals <= 20, f"Keep a small k_individuals: {k_individuals}"
distances, indices = model.get_nearest_neighbors(query=query, k=k_neighbors)
indices_on_cpu = indices.cpu()[0].tolist()
distances_on_cpu = distances.cpu()[0].tolist()
nearest_images, nearest_ids = list(zip(*[dataset[idx] for idx in indices_on_cpu]))
bearids = [id_to_label.get(nearest_id, "unknown") for nearest_id in nearest_ids]
counter = Counter(nearest_ids)
if len(counter.keys()) >= k_individuals:
return {
"k_neighbors": k_neighbors,
"dataset_indices": indices_on_cpu,
"dataset_labels": list(nearest_ids),
"dataset_images": list(nearest_images),
"bearids": bearids,
"distances": distances_on_cpu,
}
else:
new_k_neighbors = k_neighbors * 2
return _aux_get_k_nearest_individuals(
model,
k_neighbors=new_k_neighbors,
k_individuals=k_individuals,
query=query,
id_to_label=id_to_label,
dataset=dataset,
)
def _find_cutoff_index(k: int, dataset_labels: list[str]) -> Optional[int]:
"""Returns the index for dataset_labels that retrieves exactly k
individuals."""
if not dataset_labels:
return None
else:
selected_labels = set()
cutoff_index = -1
for idx, label in enumerate(dataset_labels):
if len(selected_labels) == k:
break
else:
selected_labels.add(label)
cutoff_index = idx + 1
return cutoff_index
def get_k_nearest_individuals(
model: InferenceModel,
k: int,
query,
id_to_label: dict,
dataset: Dataset,
) -> dict:
"""Returns the k nearest individuals using the inference model and a query.
A dict is returned with the following keys:
- dataset_indices: list[int] - list of indices to call get_item on the dataset
- dataset_labels: list[int] - labels of the dataset for the given dataset_indices
- dataset_images: list[torch.tensor] - chips of the bears
- distances: list[float] - distances from the query
"""
k_neighbors = k * 5
k_individuals = k
result = _aux_get_k_nearest_individuals(
model=model,
k_neighbors=k_neighbors,
k_individuals=k_individuals,
query=query,
id_to_label=id_to_label,
dataset=dataset,
)
cutoff_index = _find_cutoff_index(
k=k,
dataset_labels=result["dataset_labels"],
)
return {
"dataset_indices": result["dataset_indices"][:cutoff_index],
"dataset_labels": result["dataset_labels"][:cutoff_index],
"dataset_images": result["dataset_images"][:cutoff_index],
"bearids": result["bearids"][:cutoff_index],
"distances": result["distances"][:cutoff_index],
}
def index_by_bearid(k_nearest_individuals: dict) -> dict:
"""Returns a dict where keys are bearid labels (eg. 'bf_480') and the
values are list of the following dict shapes:
- dataset_label: int
- dataset_image: torch.tensor
- distance: float
- dataset_index: int
"""
result = {}
for dataset_label, dataset_image, distance, bearid, dataset_index in zip(
k_nearest_individuals["dataset_labels"],
k_nearest_individuals["dataset_images"],
k_nearest_individuals["distances"],
k_nearest_individuals["bearids"],
k_nearest_individuals["dataset_indices"],
):
row = {
"dataset_label": dataset_label,
"dataset_image": dataset_image,
"distance": distance,
"dataset_index": dataset_index,
}
if bearid not in result:
result[bearid] = [row]
else:
result[bearid].append(row)
return result
def prefix_keys_with(weights: OrderedDict, prefix: str = "module.") -> OrderedDict:
"""Returns the new weights where each key is prefixed with the provided
`prefix`.
Note: Useful when using DataParallel to account for the module. prefix key.
"""
weights_copy = weights.copy()
for k, v in weights.items():
weights_copy[f"{prefix}{k}"] = v
del weights_copy[k]
return weights_copy
def load_weights(
network: torch.nn.Module,
weights_filepath: Optional[Path] = None,
weights: Optional[OrderedDict] = None,
prefix: str = "",
) -> torch.nn.Module:
"""Loads the network weights.
Returns the network.
"""
if weights:
prefixed_weights = prefix_keys_with(weights, prefix=prefix)
network.load_state_dict(state_dict=prefixed_weights)
return network
elif weights_filepath:
assert weights_filepath.exists(), f"Invalid model_filepath {weights_filepath}"
weights = torch.load(weights_filepath)
prefixed_weights = prefix_keys_with(weights, prefix=prefix)
network.load_state_dict(state_dict=prefixed_weights)
return network
else:
raise Exception(f"Should provide at least weights or weights_filepath")
class MLP(nn.Module):
# layer_sizes[0] is the dimension of the input
# layer_sizes[-1] is the dimension of the output
def __init__(self, layer_sizes, final_relu=False):
super().__init__()
layer_list = []
layer_sizes = [int(x) for x in layer_sizes]
num_layers = len(layer_sizes) - 1
final_relu_layer = num_layers if final_relu else num_layers - 1
for i in range(len(layer_sizes) - 1):
input_size = layer_sizes[i]
curr_size = layer_sizes[i + 1]
if i <= final_relu_layer:
layer_list.append(nn.ReLU(inplace=False))
layer_list.append(nn.BatchNorm1d(input_size))
layer_list.append(nn.Linear(input_size, curr_size))
self.net = nn.Sequential(*layer_list)
self.last_linear = self.net[-1]
def forward(self, x):
return self.net(x)
def check_backbone(pretrained_backbone: str) -> None:
allowed_backbones = {
"resnet18",
"resnet50",
"convnext_tiny",
"convnext_base",
"convnext_large",
"efficientnet_v2_s",
# "squeezenet1_1",
"vit_b_16",
}
assert (
pretrained_backbone in allowed_backbones
), f"pretrained_backbone {pretrained_backbone} is not implemented, only {allowed_backbones}"
def make_trunk(pretrained_backbone: str = "resnet18") -> nn.Module:
"""Returns a nn.Module with pretrained weights using a given
pretrained_backbone.
Note: The currently available backbones are resnet18, resnet50,
convnext_tiny, convnext_bas, efficientnet_v2_s, squeezenet1_1, vit_b_16
"""
check_backbone(pretrained_backbone)
if pretrained_backbone == "resnet18":
return torchvision.models.resnet18(
weights=models.ResNet18_Weights.IMAGENET1K_V1
)
elif pretrained_backbone == "resnet50":
return torchvision.models.resnet50(
weights=models.ResNet50_Weights.IMAGENET1K_V1
)
elif pretrained_backbone == "convnext_tiny":
return torchvision.models.convnext_tiny(
weights=models.ConvNeXt_Tiny_Weights.IMAGENET1K_V1
)
elif pretrained_backbone == "convnext_base":
return torchvision.models.convnext_base(
weights=models.ConvNeXt_Base_Weights.IMAGENET1K_V1
)
elif pretrained_backbone == "convnext_large":
return torchvision.models.convnext_large(
weights=models.ConvNeXt_Large_Weights.IMAGENET1K_V1
)
elif pretrained_backbone == "efficientnet_v2_s":
return torchvision.models.efficientnet_v2_s(
weights=models.EfficientNet_V2_S_Weights.IMAGENET1K_V1
)
elif pretrained_backbone == "squeezenet1_1":
return torchvision.models.squeezenet1_1(
weights=models.SqueezeNet1_1_Weights.IMAGENET1K_V1
)
elif pretrained_backbone == "vit_b_16":
return torchvision.models.vit_b_16(
weights=models.ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1
)
else:
raise Exception(f"Cannot make trunk with backbone {pretrained_backbone}")
def make_embedder(
pretrained_backbone: str,
trunk: nn.Module,
embedding_size: int,
hidden_layer_sizes: list[int],
) -> nn.Module:
check_backbone(pretrained_backbone)
if pretrained_backbone in ["resnet18", "resnet50"]:
trunk_output_size = trunk.fc.in_features
trunk.fc = nn.Identity()
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
if pretrained_backbone in ["convnext_tiny", "convnext_base", "convnext_large"]:
trunk_output_size = trunk.classifier[-1].in_features
trunk.classifier[-1] = nn.Identity()
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
elif pretrained_backbone == "efficientnet_v2_s":
trunk_output_size = trunk.classifier[-1].in_features
trunk.classifier[-1] = nn.Identity()
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
elif pretrained_backbone == "vit_b_16":
trunk_output_size = trunk.heads.head.in_features
trunk.heads.head = nn.Identity()
return MLP([trunk_output_size, *hidden_layer_sizes, embedding_size])
else:
raise Exception(f"{pretrained_backbone} embedder not implemented yet")
def make_model_dict(
device: torch.device,
pretrained_backbone: str = "resnet18",
embedding_size: int = 128,
hidden_layer_sizes: list[int] = [1024],
) -> dict[str, nn.Module]:
"""
Returns a dict with the following keys:
- embedder: nn.Module - embedder model, usually an MLP.
- trunk: nn.Module - the backbone model, usually a pretrained model (like a ResNet).
"""
trunk = make_trunk(pretrained_backbone=pretrained_backbone)
embedder = make_embedder(
pretrained_backbone=pretrained_backbone,
embedding_size=embedding_size,
hidden_layer_sizes=hidden_layer_sizes,
trunk=trunk,
)
trunk = torch.nn.DataParallel(trunk.to(device))
embedder = torch.nn.DataParallel(embedder.to(device))
return {
"trunk": trunk,
"embedder": embedder,
}
class BearDataset(Dataset):
def __init__(self, dataframe, id_mapping, transform=None):
self.dataframe = dataframe
self.id_mapping = id_mapping
self.transform = transform
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
sample = self.dataframe.iloc[idx]
image_path = sample.path
bear_id = sample.bear_id
id_value = self.id_mapping.loc[self.id_mapping["label"] == bear_id, "id"].iloc[
0
]
image = Image.open(image_path)
if self.transform:
image = self.transform(image)
return image, id_value
def make_dataloaders(
batch_size: int,
df_split: pd.DataFrame,
transforms: dict,
) -> dict:
"""Returns a dict with top level keys in {dataset and loader}.
Each returns a dict with the train, val and test objects associated.
"""
df_train = df_split[df_split["split"] == "train"]
df_val = df_split[df_split["split"] == "val"]
df_test = df_split[df_split["split"] == "test"]
id_mapping = make_id_mapping(df=df_split)
train_dataset = BearDataset(
df_train,
id_mapping,
transform=transforms["train"],
)
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
)
val_dataset = BearDataset(
df_val,
id_mapping,
transform=transforms["val"],
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
)
test_dataset = BearDataset(
df_test,
id_mapping,
transform=transforms["test"],
)
test_loader = DataLoader(
test_dataset,
batch_size=batch_size,
)
viz_dataset = BearDataset(
df_train,
id_mapping,
transform=transforms["viz"],
)
viz_loader = DataLoader(
viz_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
)
full_dataset = BearDataset(
df_split,
id_mapping,
transform=transforms["val"],
)
return {
"dataset": {
"viz": viz_dataset,
"train": train_dataset,
"val": val_dataset,
"test": test_dataset,
"full": full_dataset,
},
"loader": {
"viz": viz_loader,
"train": train_loader,
"val": val_loader,
"test": test_loader,
},
}
def make_id_mapping(df: pd.DataFrame) -> pd.DataFrame:
"""Returns a dataframe that maps a bear label (eg.
bf_755) to a unique natural number (eg. 0). The dataFrame contains
two columns, namely id and label.
"""
return pd.DataFrame(
list(enumerate(df["bear_id"].unique())), columns=["id", "label"]
)
def filter_none(xs: list) -> list:
return [x for x in xs if x is not None]
def get_dtype(dtype_str: str) -> torch.dtype:
if dtype_str == "float32":
return torch.float32
elif dtype_str == "int64":
return torch.int64
else:
logging.warning(
f"dtype_str {dtype_str} not implemented, returning default value"
)
return torch.float32
def get_transforms(
data_augmentation: dict = {},
trunk_preprocessing: dict = {},
) -> dict:
"""Returns a dict containing the transforms for the following splits:
train, val, test and viz (the latter is used for batch visualization).
"""
logging.info(f"data_augmentation config: {data_augmentation}")
logging.info(f"trunk preprocessing config: {trunk_preprocessing}")
DEFAULT_CROP_SIZE = 224
crop_size = (
trunk_preprocessing.get("crop_size", DEFAULT_CROP_SIZE),
trunk_preprocessing.get("crop_size", DEFAULT_CROP_SIZE),
)
# transform to persist a batch of data as an artefact
transform_viz = transforms.Compose(
[
transforms.Resize(crop_size),
transforms.ToTensor(),
]
)
mdtype: Optional[torch.dtype] = (
get_dtype(trunk_preprocessing["values"].get("dtype", None))
if trunk_preprocessing.get("values", None)
else None
)
mscale: Optional[bool] = (
trunk_preprocessing["values"].get("scale", None)
if trunk_preprocessing.get("values", None)
else None
)
mmean: Optional[list[float]] = (
trunk_preprocessing["normalization"].get("mean", None)
if trunk_preprocessing.get("normalization", None)
else None
)
mstd: Optional[list[float]] = (
trunk_preprocessing["normalization"].get("std", None)
if trunk_preprocessing.get("normalization", None)
else None
)
hue = (
data_augmentation["colorjitter"].get("hue", 0)
if data_augmentation.get("colorjitter", 0)
else 0
)
saturation = (
data_augmentation["colorjitter"].get("saturation", 0)
if data_augmentation.get("colorjitter", 0)
else 0
)
degrees = (
data_augmentation["rotation"].get("degrees", 0)
if data_augmentation.get("rotation", 0)
else 0
)
transformations_plain = [
transforms.Resize(crop_size),
transforms.ToTensor(),
v2.ToDtype(dtype=mdtype, scale=mscale) if mdtype and mscale else None,
transforms.Normalize(mean=mmean, std=mstd) if mmean and mstd else None,
]
transformations_train = [
transforms.Resize(crop_size),
(
transforms.ColorJitter(
hue=hue,
saturation=saturation,
)
if data_augmentation.get("colorjitter", None)
else None
), # Taken from Dolphin ID
(
v2.RandomRotation(degrees=degrees)
if data_augmentation.get("rotation", None)
else None
), # Taken from Dolphin ID
transforms.ToTensor(),
v2.ToDtype(dtype=mdtype, scale=mscale) if mdtype and mscale else None,
transforms.Normalize(mean=mmean, std=mstd) if mmean and mstd else None,
]
# Filtering out None transforms
transform_plain = transforms.Compose(filter_none(transformations_plain))
transform_train = transforms.Compose(filter_none(transformations_train))
return {
"viz": transform_viz,
"train": transform_train,
"val": transform_plain,
"test": transform_plain,
}
def resize(
mask: np.ndarray,
dim: tuple[int, int],
interpolation: int = cv2.INTER_LINEAR,
):
"""Resize the mask to the provided `dim` using the interpolation method.
`dim`: (W, H) format
"""
return cv2.resize(mask, dsize=dim, interpolation=interpolation)
def crop_from_yolov8(prediction_yolov8) -> np.ndarray:
"""Given a yolov8 prediction, returns an image containing the cropped bear
head."""
H, W = prediction_yolov8.orig_shape
predictions_masks = prediction_yolov8.masks.data.to("cpu").numpy()
idx = np.argmax(prediction_yolov8.boxes.conf.to("cpu").numpy())
predictions_mask = predictions_masks[idx]
prediction_resized = resize(predictions_mask, dim=(W, H))
masked_image = prediction_yolov8.orig_img.copy()
black_pixel = [0, 0, 0]
masked_image[~prediction_resized.astype(bool)] = black_pixel
x0, y0, x1, y1 = prediction_yolov8.boxes[idx].xyxy[0].to("cpu").numpy()
return masked_image[int(y0) : int(y1), int(x0) : int(x1)]
def square_pad(img: np.ndarray):
"""Returns an image with dimension max(W, H) x max(W, H), padded with black
pixels."""
H, W, _ = img.shape
K = max(H, W)
top = (K - H) // 2
bottom = (K - H) // 2
left = (K - W) // 2
right = (K - W) // 2
return cv2.copyMakeBorder(
img.copy(),
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
)
def get_best_device() -> torch.device:
"""Returns the best torch device depending on the hardware it is running
on."""
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def _setup_chips() -> None:
"""
Setup the Database of chips used for the face recognition.
"""
subprocess.run(["./scripts/chips/install.sh"])
def _setup_ml_pipeline(input_packaged_pipeline: Path, install_path: Path) -> None:
"""
Setup the ML pipeline, installing the model weights into their folders.
"""
logging.info(f"Installing the packaged pipeline in {install_path}")
os.makedirs(install_path, exist_ok=True)
packaged_pipeline_archive_filepath = input_packaged_pipeline
shutil.unpack_archive(
filename=packaged_pipeline_archive_filepath,
extract_dir=install_path,
)
metriclearning_model_filepath = install_path / "bearidentification" / "model.pt"
device = get_best_device()
bearidentification_model = torch.load(
metriclearning_model_filepath,
map_location=device,
)
df_split = pd.DataFrame(bearidentification_model["data_split"])
chips_root_dir = Path("/".join(df_split.iloc[0]["path"].split("/")[:-4]))
logging.info(f"Retrieved chips_root_dir: {chips_root_dir}")
os.makedirs(chips_root_dir, exist_ok=True)
shutil.copytree(
src=install_path / "chips",
dst=chips_root_dir,
dirs_exist_ok=True,
)
def setup(input_packaged_pipeline: Path, install_path: Path) -> None:
"""
Full setup of the project.
"""
_setup_chips()
_setup_ml_pipeline(
input_packaged_pipeline=input_packaged_pipeline, install_path=install_path
)
def bgr_to_rgb(a: np.ndarray) -> np.ndarray:
"""
Turn a BGR numpy array into a RGB numpy array when the array `a` represents
an image.
"""
return a[:, :, ::-1]
def load_segmentation_model(filepath_weights: Path) -> YOLO:
"""
Load the YOLO model given the filepath_weights.
"""
assert filepath_weights.exists()
return YOLO(filepath_weights)
def load_metric_learning_model(device: torch.device, filepath_weights: Path) -> Any:
assert filepath_weights.exists()
return torch.load(filepath_weights, map_location=device)
def load_models(
filepath_segmentation_weights: Path,
filepath_metric_learning_weights: Path,
) -> dict[str, Any]:
assert filepath_segmentation_weights.exists()
assert filepath_metric_learning_weights.exists()
device = get_best_device()
model_segmentation = load_segmentation_model(filepath_segmentation_weights)
model_metric_learning = load_metric_learning_model(
device=device,
filepath_weights=filepath_metric_learning_weights,
)
return {
"segmentation": model_segmentation,
"metric_learning": model_metric_learning,
}
def run_segmentation(model: YOLO, pil_image: Image.Image) -> dict[str, Any]:
predictions = model(pil_image)
if len(predictions) > 0:
prediction = predictions[0]
pil_image_with_prediction = Image.fromarray(bgr_to_rgb(prediction.plot()))
return {"pil_image": pil_image_with_prediction, "prediction": prediction}
else:
return {}
def run_crop(square_dim: int, yolo_prediction) -> dict[str, Any]:
"""
Run the crop stage on the yolo_prediction.
It resizes a square bear face based on `square_dim`.
"""
cropped_bear_head = crop_from_yolov8(prediction_yolov8=yolo_prediction)
padded_cropped_head = square_pad(cropped_bear_head)
resized_padded_cropped_head = resize(
padded_cropped_head, dim=(square_dim, square_dim)
)
pil_image_cropped_bear_head = Image.fromarray(bgr_to_rgb(cropped_bear_head))
pil_image_padded_cropped_head = Image.fromarray(
bgr_to_rgb(resized_padded_cropped_head)
)
pil_image_resized_padded_cropped_head = Image.fromarray(
bgr_to_rgb(resized_padded_cropped_head)
)
return {
"pil_images": {
"cropped": pil_image_cropped_bear_head,
"padded": pil_image_padded_cropped_head,
"resized": pil_image_resized_padded_cropped_head,
}
}
def make_id_to_label(id_mapping: pd.DataFrame) -> dict[int, str]:
return id_mapping.set_index("id")["label"].to_dict()
def run_identification(
loaded_model,
k: int,
knn_index_filepath: Path,
pil_image_chip: Image.Image,
n_samples_per_individual: int = 5,
) -> dict[str, Any]:
"""
Run the identification stage.
"""
device = get_best_device()
args = loaded_model["args"]
config = args.copy()
del config["run"]
transforms = get_transforms(
data_augmentation=config.get("data_augmentation", {}),
trunk_preprocessing=config["model"]["trunk"].get("preprocessing", {}),
)
logging.info("loading the df_split")
df_split = pd.DataFrame(loaded_model["data_split"])
df_split.info()
id_mapping = make_id_mapping(df=df_split)
dataloaders = make_dataloaders(
batch_size=config["batch_size"],
df_split=df_split,
transforms=transforms,
)
model_dict = make_model_dict(
device=device,
pretrained_backbone=config["model"]["trunk"]["backbone"],
embedding_size=config["model"]["embedder"]["embedding_size"],
hidden_layer_sizes=config["model"]["embedder"]["hidden_layer_sizes"],
)
trunk_weights = loaded_model["trunk"]
trunk = model_dict["trunk"]
trunk = load_weights(
network=trunk,
weights=trunk_weights,
prefix="module.",
)
embedder_weights = loaded_model["embedder"]
embedder = model_dict["embedder"]
embedder = load_weights(
network=embedder,
weights=embedder_weights,
prefix="module.",
)
model = InferenceModel(
trunk=trunk,
embedder=embedder,
)
dataset_full = dataloaders["dataset"]["full"]
assert (
knn_index_filepath.exists()
), f"knn_index_filepath invalid filepath: {knn_index_filepath}"
model.load_knn_func(filename=str(knn_index_filepath))
image = pil_image_chip
transform_test = transforms["test"]
model_input = transform_test(image)
query = model_input.unsqueeze(0)
id_to_label = make_id_to_label(id_mapping=id_mapping)
k_nearest_individuals = get_k_nearest_individuals(
model=model,
k=k,
query=query,
id_to_label=id_to_label,
dataset=dataset_full,
)
indexed_k_nearest_individuals = index_by_bearid(
k_nearest_individuals=k_nearest_individuals
)
bear_ids = list(indexed_k_nearest_individuals.keys())
indexed_samples = make_indexed_samples(
bear_ids=bear_ids,
df_split=df_split,
n=n_samples_per_individual,
)
return {
"bear_ids": bear_ids,
"k_nearest_individuals": k_nearest_individuals,
"indexed_k_nearest_individuals": indexed_k_nearest_individuals,
"indexed_samples": indexed_samples,
}
def run_pipeline(
loaded_models: dict[str, Any],
param_square_dim: int,
param_k: int,
param_n_samples_per_individual: int,
knn_index_filepath: Path,
pil_image: Image.Image,
) -> dict[str, Any]:
"""
Run the full pipeline on pil_image, using `pil_image` as an input.
Args:
loaded_models (dict[str, Any]): dict of all the loaded models needed to
run the pipeline. Usually loaded via the `load_model` function.
param_square_dim (int): size of the square chip.
param_k (int): how many closest individuals to query to compare it to
the chip
param_n_samples_per_individual (int): How many chips from each
individual do we want to compare it to?
knn_index_filepath (Path): filepath to the KNN index of the embedded
chips.
pil_image (PIL): Main input image of the pipeline
"""
results_segmentation = run_segmentation(
model=loaded_models["segmentation"], pil_image=pil_image
)
results_crop = run_crop(
square_dim=param_square_dim,
yolo_prediction=results_segmentation["prediction"],
)
pil_image_chip = results_crop["pil_images"]["resized"]
results_identification = run_identification(
loaded_model=loaded_models["metric_learning"],
k=param_k,
knn_index_filepath=knn_index_filepath,
pil_image_chip=pil_image_chip,
n_samples_per_individual=5,
)
return {
"order": ["segmentation", "crop", "identification"],
"stages": {
"segmentation": {
"input": {"pil_image": pil_image},
"output": results_segmentation,
},
"crop": {
"input": {
"square_dim": param_square_dim,
"yolo_prediction": results_segmentation["prediction"],
},
"output": results_crop,
},
"identification": {
"input": {
"k": param_k,
"n_samples_per_individual": param_n_samples_per_individual,
"knn_index_filepath": knn_index_filepath,
"pil_image_chip": pil_image_chip,
},
"output": results_identification,
},
},
}
|