File size: 6,049 Bytes
8eea76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import torchvision
from matplotlib import font_manager
from matplotlib.figure import Figure
from matplotlib.gridspec import GridSpec
from PIL import Image

IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
DISTANCE_THRESHOLD_NEW_INDIVIDUAL = 0.7


def get_inverse_normalize_transform(mean, std):
    return torchvision.transforms.Normalize(
        mean=[-m / s for m, s in zip(mean, std)], std=[1 / s for s in std]
    )


def get_color(
    distance: float,
    distance_threshold_new_individual: float = DISTANCE_THRESHOLD_NEW_INDIVIDUAL,
    margin: float = 0.10,
) -> str:
    threshold_unsure = distance_threshold_new_individual * (1.0 - margin)
    threshold_new_individual = distance_threshold_new_individual * (1 + margin)
    if distance < threshold_unsure:
        return "green"
    elif distance < threshold_new_individual:
        return "orange"
    else:
        return "red"


def draw_extrated_chip(ax, chip_image) -> None:
    ax.set_title("Extracted chip")
    ax.set_axis_off()
    ax.imshow(chip_image)


def draw_closest_neighbors(
    fig: Figure,
    gs: GridSpec,
    i_start: int,
    k_closest_neighbors: int,
    indexed_k_nearest_individuals: dict,
) -> None:
    inv_normalize = get_inverse_normalize_transform(
        mean=IMAGENET_MEAN,
        std=IMAGENET_STD,
    )

    neighbors = []
    for bear_id, xs in indexed_k_nearest_individuals.items():
        for x in xs:
            data = x.copy()
            data["bear_id"] = bear_id
            neighbors.append(data)

    nearest_neighbors = sorted(
        neighbors,
        key=lambda x: x["distance"],
    )[:k_closest_neighbors]
    for j, neighbor in enumerate(nearest_neighbors):
        ax = fig.add_subplot(gs[i_start, j])
        distance = neighbor["distance"]
        bear_id = neighbor["bear_id"]
        dataset_image = neighbor["dataset_image"]
        image = inv_normalize(dataset_image).numpy()
        image = np.transpose(image, (1, 2, 0))
        color = get_color(distance=distance)
        ax.set_axis_off()
        ax.set_title(label=f"{bear_id}: {distance:.2f}", color=color)
        ax.imshow(image)


def draw_top_k_individuals(
    fig: Figure,
    gs: GridSpec,
    i_start: int,
    i_end: int,
    indexed_k_nearest_individuals: dict,
    bear_ids: list[str],
    indexed_samples: dict,
):
    inv_normalize = get_inverse_normalize_transform(
        mean=IMAGENET_MEAN,
        std=IMAGENET_STD,
    )
    for i in range(i_start, i_end):
        for j in range(len(bear_ids)):
            # Draw the closest individual chips
            if i == i_start:
                ax = fig.add_subplot(gs[i, j])
                bear_id = bear_ids[j]
                nearest_individual = indexed_k_nearest_individuals[bear_id][0]
                distance = nearest_individual["distance"]
                dataset_image = nearest_individual["dataset_image"]
                image = inv_normalize(dataset_image).numpy()
                image = np.transpose(image, (1, 2, 0))
                color = get_color(distance=distance)
                ax.set_axis_off()
                ax.set_title(label=f"{bear_id}: {distance:.2f}", color=color)
                ax.imshow(image)

            # Draw random chips from the same individuals
            else:
                bear_id = bear_ids[j]
                idx = i - i_start - 1
                if idx < len(indexed_samples[bear_id]):
                    filepath = indexed_samples[bear_id][idx]
                    if filepath:
                        ax = fig.add_subplot(gs[i, j])
                        with Image.open(filepath) as image:
                            ax.set_axis_off()
                            ax.imshow(image)


def bearid_ui(
    pil_image_chip: Image.Image,
    indexed_k_nearest_individuals: dict,
    indexed_samples: dict,
    save_filepath: Path,
    k_closest_neighbors: int = 5,
) -> None:
    """Main UI for identifying bears."""
    chip_image = pil_image_chip
    # Assumption: the bear_ids are sorted by distance - if that's not something
    # we can rely on, we should just sort
    bear_ids = list(indexed_k_nearest_individuals.keys())

    # Max of the number of closest_neighbors and the number of bearids
    ncols = max(len(bear_ids), k_closest_neighbors)

    # 1 row for the closest neighbors title section
    # 1 row for the closest neighbors
    # 1 row for the individuals title section
    # rows for the indexed_samples (radom images of a given individual)
    nrows = max([len(xs) for xs in indexed_samples.values()]) + 3
    figsize = (3 * ncols, 3 * nrows)
    fig = plt.figure(constrained_layout=True, figsize=figsize)
    gs = GridSpec(nrows=nrows, ncols=ncols, figure=fig)
    font_properties_section = font_manager.FontProperties(size=35)
    font_properties_title = font_manager.FontProperties(size=40)

    # Draw closest neighbors
    i_closest_neighbors = 2
    ax = fig.add_subplot(gs[i_closest_neighbors - 1, :])
    ax.set_axis_off()
    ax.text(
        y=0.2,
        x=0,
        s="Closest faces",
        font_properties=font_properties_section,
    )
    draw_closest_neighbors(
        fig=fig,
        gs=gs,
        i_start=i_closest_neighbors,
        k_closest_neighbors=k_closest_neighbors,
        indexed_k_nearest_individuals=indexed_k_nearest_individuals,
    )
    # Filling out the grid with top k individuals and random samples
    i_top_k_individual = 4
    ax = fig.add_subplot(gs[i_top_k_individual - 1, :])
    ax.set_axis_off()
    ax.text(
        y=0.2,
        x=0,
        s=f"Closest {len(bear_ids)} individuals",
        font_properties=font_properties_section,
    )
    draw_top_k_individuals(
        fig=fig,
        gs=gs,
        i_end=nrows,
        i_start=i_top_k_individual,
        indexed_k_nearest_individuals=indexed_k_nearest_individuals,
        bear_ids=bear_ids,
        indexed_samples=indexed_samples,
    )

    plt.savefig(save_filepath, bbox_inches="tight")
    plt.close()