Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
import matplotlib.pyplot as plt | |
# Load model and tokenizer | |
model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
# Streamlit interface | |
st.title("Sentiment Analysis with Hugging Face Transformers") | |
prompt_text = "create a nlp transformer example using pytorch that will run hugging face, put a streamlit interface on it that will take the appropriate inputs and outputs include a matplotlib graph if necessary with the output. The code should be all together to make it easy to cut and paste." | |
st.write(f"**Prompt:** {prompt_text}") | |
st.write("Enter text to analyze its sentiment:") | |
input_text = st.text_area("Input Text", height=200) | |
if st.button("Analyze"): | |
if input_text: | |
# Perform sentiment analysis | |
results = classifier(input_text) | |
# Display results | |
st.write("Results:") | |
st.write(results) | |
# Extract scores for plotting | |
scores = results[0]['score'] | |
labels = results[0]['label'] | |
# Plotting | |
fig, ax = plt.subplots() | |
ax.bar(labels, scores, color='skyblue') | |
ax.set_ylabel('Score') | |
ax.set_title('Sentiment Analysis Result') | |
st.pyplot(fig) | |
else: | |
st.write("Please enter text to analyze.") | |