Spaces:
Sleeping
Sleeping
Update pages/3_NumpyBasics.py
Browse files- pages/3_NumpyBasics.py +44 -23
pages/3_NumpyBasics.py
CHANGED
|
@@ -1,123 +1,143 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
|
| 4 |
-
# Example functions
|
| 5 |
def example1():
|
|
|
|
| 6 |
code = "import numpy as np"
|
| 7 |
exec(code)
|
| 8 |
-
return code
|
| 9 |
|
| 10 |
def example2():
|
|
|
|
| 11 |
code = "array = np.array([1, 2, 3, 4, 5])\narray"
|
| 12 |
array = np.array([1, 2, 3, 4, 5])
|
| 13 |
-
return code, array
|
| 14 |
|
| 15 |
def example3():
|
|
|
|
| 16 |
code = "array = np.arange(10)\narray"
|
| 17 |
array = np.arange(10)
|
| 18 |
-
return code, array
|
| 19 |
|
| 20 |
def example4():
|
|
|
|
| 21 |
code = "array = np.linspace(0, 1, 5)\narray"
|
| 22 |
array = np.linspace(0, 1, 5)
|
| 23 |
-
return code, array
|
| 24 |
|
| 25 |
def example5():
|
|
|
|
| 26 |
code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nreshaped_array = array.reshape((3, 2))\nreshaped_array"
|
| 27 |
array = np.array([[1, 2, 3], [4, 5, 6]])
|
| 28 |
reshaped_array = array.reshape((3, 2))
|
| 29 |
-
return code, reshaped_array
|
| 30 |
|
| 31 |
def example6():
|
|
|
|
| 32 |
code = "array = np.array([1, 2, 3, 4, 5])\narray[1:4]"
|
| 33 |
array = np.array([1, 2, 3, 4, 5])
|
| 34 |
sliced_array = array[1:4]
|
| 35 |
-
return code, sliced_array
|
| 36 |
|
| 37 |
def example7():
|
|
|
|
| 38 |
code = "array = np.array([[1, 2], [3, 4], [5, 6]])\nfancy_indexed_array = array[[0, 1], [1, 0]]\nfancy_indexed_array"
|
| 39 |
array = np.array([[1, 2], [3, 4], [5, 6]])
|
| 40 |
fancy_indexed_array = array[[0, 1], [1, 0]]
|
| 41 |
-
return code, fancy_indexed_array
|
| 42 |
|
| 43 |
def example8():
|
|
|
|
| 44 |
code = "array = np.array([1, 2, 3, 4, 5])\nboolean_indexed_array = array[array > 3]\nboolean_indexed_array"
|
| 45 |
array = np.array([1, 2, 3, 4, 5])
|
| 46 |
boolean_indexed_array = array[array > 3]
|
| 47 |
-
return code, boolean_indexed_array
|
| 48 |
|
| 49 |
def example9():
|
|
|
|
| 50 |
code = "array = np.array([1, 2, 3, 4, 5])\narray * 2"
|
| 51 |
array = np.array([1, 2, 3, 4, 5])
|
| 52 |
result = array * 2
|
| 53 |
-
return code, result
|
| 54 |
|
| 55 |
def example10():
|
|
|
|
| 56 |
code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nnp.sum(array)"
|
| 57 |
array = np.array([[1, 2, 3], [4, 5, 6]])
|
| 58 |
result = np.sum(array)
|
| 59 |
-
return code, result
|
| 60 |
|
| 61 |
def example11():
|
|
|
|
| 62 |
code = "matrix = np.array([[1, 2], [3, 4]])\nnp.dot(matrix, matrix)"
|
| 63 |
matrix = np.array([[1, 2], [3, 4]])
|
| 64 |
result = np.dot(matrix, matrix)
|
| 65 |
-
return code, result
|
| 66 |
|
| 67 |
def example12():
|
|
|
|
| 68 |
code = "array = np.array([1, 2, 3])\narray + np.array([4, 5, 6])"
|
| 69 |
array = np.array([1, 2, 3])
|
| 70 |
result = array + np.array([4, 5, 6])
|
| 71 |
-
return code, result
|
| 72 |
|
| 73 |
def example13():
|
|
|
|
| 74 |
code = "random_array = np.random.random((2, 2))\nrandom_array"
|
| 75 |
random_array = np.random.random((2, 2))
|
| 76 |
-
return code, random_array
|
| 77 |
|
| 78 |
def example14():
|
|
|
|
| 79 |
code = "array = np.array([3, 1, 2])\nnp.sort(array)"
|
| 80 |
array = np.array([3, 1, 2])
|
| 81 |
sorted_array = np.sort(array)
|
| 82 |
-
return code, sorted_array
|
| 83 |
|
| 84 |
def example15():
|
|
|
|
| 85 |
code = "array = np.array([1, 2, 3, 4, 5])\nnp.searchsorted(array, 3)"
|
| 86 |
array = np.array([1, 2, 3, 4, 5])
|
| 87 |
index = np.searchsorted(array, 3)
|
| 88 |
-
return code, index
|
| 89 |
|
| 90 |
def example16():
|
| 91 |
from skimage import data
|
|
|
|
| 92 |
code = "from skimage import data\nimage = data.camera()\nnp.mean(image)"
|
| 93 |
image = data.camera()
|
| 94 |
mean_value = np.mean(image)
|
| 95 |
-
return code, mean_value
|
| 96 |
|
| 97 |
def example17():
|
|
|
|
| 98 |
code = "positions = np.random.random((10, 2))\nvelocities = np.random.random((10, 2))\npositions + velocities"
|
| 99 |
positions = np.random.random((10, 2))
|
| 100 |
velocities = np.random.random((10, 2))
|
| 101 |
result = positions + velocities
|
| 102 |
-
return code, result
|
| 103 |
|
| 104 |
def example18():
|
|
|
|
| 105 |
code = "data = np.random.random((100, 4))\nnp.mean(data, axis=0)"
|
| 106 |
data = np.random.random((100, 4))
|
| 107 |
mean_values = np.mean(data, axis=0)
|
| 108 |
-
return code, mean_values
|
| 109 |
|
| 110 |
def example19():
|
|
|
|
| 111 |
code = "array = np.array([1, 2, 3])\nnp.power(array, 3)"
|
| 112 |
array = np.array([1, 2, 3])
|
| 113 |
result = np.power(array, 3)
|
| 114 |
-
return code, result
|
| 115 |
|
| 116 |
def example20():
|
|
|
|
| 117 |
code = "array = np.array([1, 2, 3, 4, 5])\nnp.cumsum(array)"
|
| 118 |
array = np.array([1, 2, 3, 4, 5])
|
| 119 |
result = np.cumsum(array)
|
| 120 |
-
return code, result
|
| 121 |
|
| 122 |
examples = [
|
| 123 |
("Example 1: Import NumPy", example1),
|
|
@@ -146,7 +166,8 @@ st.title("NumPy Course with Streamlit")
|
|
| 146 |
|
| 147 |
for title, func in examples:
|
| 148 |
st.header(title)
|
|
|
|
|
|
|
|
|
|
| 149 |
if st.button(f"Run {title.split(':')[0]}"):
|
| 150 |
-
code, result = func()
|
| 151 |
-
st.code(code)
|
| 152 |
st.write("Output:", result)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
|
| 4 |
+
# Example functions with explanations
|
| 5 |
def example1():
|
| 6 |
+
explanation = "Importing the NumPy library."
|
| 7 |
code = "import numpy as np"
|
| 8 |
exec(code)
|
| 9 |
+
return explanation, code
|
| 10 |
|
| 11 |
def example2():
|
| 12 |
+
explanation = "Creating a simple NumPy array."
|
| 13 |
code = "array = np.array([1, 2, 3, 4, 5])\narray"
|
| 14 |
array = np.array([1, 2, 3, 4, 5])
|
| 15 |
+
return explanation, code, array
|
| 16 |
|
| 17 |
def example3():
|
| 18 |
+
explanation = "Creating an array with a range of values from 0 to 9."
|
| 19 |
code = "array = np.arange(10)\narray"
|
| 20 |
array = np.arange(10)
|
| 21 |
+
return explanation, code, array
|
| 22 |
|
| 23 |
def example4():
|
| 24 |
+
explanation = "Creating an array with 5 evenly spaced values between 0 and 1."
|
| 25 |
code = "array = np.linspace(0, 1, 5)\narray"
|
| 26 |
array = np.linspace(0, 1, 5)
|
| 27 |
+
return explanation, code, array
|
| 28 |
|
| 29 |
def example5():
|
| 30 |
+
explanation = "Reshaping a 2D array from shape (2, 3) to (3, 2)."
|
| 31 |
code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nreshaped_array = array.reshape((3, 2))\nreshaped_array"
|
| 32 |
array = np.array([[1, 2, 3], [4, 5, 6]])
|
| 33 |
reshaped_array = array.reshape((3, 2))
|
| 34 |
+
return explanation, code, reshaped_array
|
| 35 |
|
| 36 |
def example6():
|
| 37 |
+
explanation = "Slicing a 1D array to get elements from index 1 to 3."
|
| 38 |
code = "array = np.array([1, 2, 3, 4, 5])\narray[1:4]"
|
| 39 |
array = np.array([1, 2, 3, 4, 5])
|
| 40 |
sliced_array = array[1:4]
|
| 41 |
+
return explanation, code, sliced_array
|
| 42 |
|
| 43 |
def example7():
|
| 44 |
+
explanation = "Using fancy indexing to select specific elements from a 2D array."
|
| 45 |
code = "array = np.array([[1, 2], [3, 4], [5, 6]])\nfancy_indexed_array = array[[0, 1], [1, 0]]\nfancy_indexed_array"
|
| 46 |
array = np.array([[1, 2], [3, 4], [5, 6]])
|
| 47 |
fancy_indexed_array = array[[0, 1], [1, 0]]
|
| 48 |
+
return explanation, code, fancy_indexed_array
|
| 49 |
|
| 50 |
def example8():
|
| 51 |
+
explanation = "Using boolean indexing to select elements greater than 3."
|
| 52 |
code = "array = np.array([1, 2, 3, 4, 5])\nboolean_indexed_array = array[array > 3]\nboolean_indexed_array"
|
| 53 |
array = np.array([1, 2, 3, 4, 5])
|
| 54 |
boolean_indexed_array = array[array > 3]
|
| 55 |
+
return explanation, code, boolean_indexed_array
|
| 56 |
|
| 57 |
def example9():
|
| 58 |
+
explanation = "Performing element-wise multiplication of a 1D array by 2."
|
| 59 |
code = "array = np.array([1, 2, 3, 4, 5])\narray * 2"
|
| 60 |
array = np.array([1, 2, 3, 4, 5])
|
| 61 |
result = array * 2
|
| 62 |
+
return explanation, code, result
|
| 63 |
|
| 64 |
def example10():
|
| 65 |
+
explanation = "Calculating the sum of all elements in a 2D array."
|
| 66 |
code = "array = np.array([[1, 2, 3], [4, 5, 6]])\nnp.sum(array)"
|
| 67 |
array = np.array([[1, 2, 3], [4, 5, 6]])
|
| 68 |
result = np.sum(array)
|
| 69 |
+
return explanation, code, result
|
| 70 |
|
| 71 |
def example11():
|
| 72 |
+
explanation = "Calculating the dot product of two matrices."
|
| 73 |
code = "matrix = np.array([[1, 2], [3, 4]])\nnp.dot(matrix, matrix)"
|
| 74 |
matrix = np.array([[1, 2], [3, 4]])
|
| 75 |
result = np.dot(matrix, matrix)
|
| 76 |
+
return explanation, code, result
|
| 77 |
|
| 78 |
def example12():
|
| 79 |
+
explanation = "Performing broadcasting by adding two 1D arrays element-wise."
|
| 80 |
code = "array = np.array([1, 2, 3])\narray + np.array([4, 5, 6])"
|
| 81 |
array = np.array([1, 2, 3])
|
| 82 |
result = array + np.array([4, 5, 6])
|
| 83 |
+
return explanation, code, result
|
| 84 |
|
| 85 |
def example13():
|
| 86 |
+
explanation = "Generating a 2x2 array with random values between 0 and 1."
|
| 87 |
code = "random_array = np.random.random((2, 2))\nrandom_array"
|
| 88 |
random_array = np.random.random((2, 2))
|
| 89 |
+
return explanation, code, random_array
|
| 90 |
|
| 91 |
def example14():
|
| 92 |
+
explanation = "Sorting a 1D array in ascending order."
|
| 93 |
code = "array = np.array([3, 1, 2])\nnp.sort(array)"
|
| 94 |
array = np.array([3, 1, 2])
|
| 95 |
sorted_array = np.sort(array)
|
| 96 |
+
return explanation, code, sorted_array
|
| 97 |
|
| 98 |
def example15():
|
| 99 |
+
explanation = "Finding the index of a value in a sorted array."
|
| 100 |
code = "array = np.array([1, 2, 3, 4, 5])\nnp.searchsorted(array, 3)"
|
| 101 |
array = np.array([1, 2, 3, 4, 5])
|
| 102 |
index = np.searchsorted(array, 3)
|
| 103 |
+
return explanation, code, index
|
| 104 |
|
| 105 |
def example16():
|
| 106 |
from skimage import data
|
| 107 |
+
explanation = "Calculating the mean value of an image."
|
| 108 |
code = "from skimage import data\nimage = data.camera()\nnp.mean(image)"
|
| 109 |
image = data.camera()
|
| 110 |
mean_value = np.mean(image)
|
| 111 |
+
return explanation, code, mean_value
|
| 112 |
|
| 113 |
def example17():
|
| 114 |
+
explanation = "Simulating random positions and velocities in a 2D space."
|
| 115 |
code = "positions = np.random.random((10, 2))\nvelocities = np.random.random((10, 2))\npositions + velocities"
|
| 116 |
positions = np.random.random((10, 2))
|
| 117 |
velocities = np.random.random((10, 2))
|
| 118 |
result = positions + velocities
|
| 119 |
+
return explanation, code, result
|
| 120 |
|
| 121 |
def example18():
|
| 122 |
+
explanation = "Calculating the mean of each column in a 2D array."
|
| 123 |
code = "data = np.random.random((100, 4))\nnp.mean(data, axis=0)"
|
| 124 |
data = np.random.random((100, 4))
|
| 125 |
mean_values = np.mean(data, axis=0)
|
| 126 |
+
return explanation, code, mean_values
|
| 127 |
|
| 128 |
def example19():
|
| 129 |
+
explanation = "Calculating the element-wise power of a 1D array."
|
| 130 |
code = "array = np.array([1, 2, 3])\nnp.power(array, 3)"
|
| 131 |
array = np.array([1, 2, 3])
|
| 132 |
result = np.power(array, 3)
|
| 133 |
+
return explanation, code, result
|
| 134 |
|
| 135 |
def example20():
|
| 136 |
+
explanation = "Calculating the cumulative sum of a 1D array."
|
| 137 |
code = "array = np.array([1, 2, 3, 4, 5])\nnp.cumsum(array)"
|
| 138 |
array = np.array([1, 2, 3, 4, 5])
|
| 139 |
result = np.cumsum(array)
|
| 140 |
+
return explanation, code, result
|
| 141 |
|
| 142 |
examples = [
|
| 143 |
("Example 1: Import NumPy", example1),
|
|
|
|
| 166 |
|
| 167 |
for title, func in examples:
|
| 168 |
st.header(title)
|
| 169 |
+
explanation, code, result = func()
|
| 170 |
+
st.write(explanation)
|
| 171 |
+
st.code(code)
|
| 172 |
if st.button(f"Run {title.split(':')[0]}"):
|
|
|
|
|
|
|
| 173 |
st.write("Output:", result)
|