File size: 6,880 Bytes
b61df43
 
 
 
 
cdb2a59
 
6c5f514
 
 
 
b61df43
 
 
 
0a95c56
 
b61df43
 
0a95c56
b61df43
 
 
 
 
 
 
 
 
9ed47c8
 
9472488
b61df43
 
9ed47c8
b61df43
 
 
 
 
 
 
 
 
cdb2a59
 
b61df43
 
 
9472488
 
 
 
 
 
 
 
 
 
 
 
 
b61df43
 
 
 
 
6c5f514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61df43
9ed47c8
 
 
 
 
 
 
 
 
 
 
 
 
6c5f514
 
 
 
9472488
6c5f514
 
b61df43
cdb2a59
 
 
 
 
 
 
 
 
 
 
6c5f514
9472488
cdb2a59
 
 
 
9472488
cdb2a59
 
 
 
 
 
b61df43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ed47c8
6c5f514
b61df43
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from datasets import load_dataset
import folium
from streamlit_folium import st_folium
from geopy.geocoders import Nominatim

# Initialize geolocator
geolocator = Nominatim(user_agent="geoapiExercises")

# Hugging Face Datasets
@st.cache_data
def load_data():
    network_insights = load_dataset("infinite-dataset-hub/5GNetworkOptimization", split="train")
    return network_insights.to_pandas()

# Load Datasets
network_insights = load_data()

# Title
st.title("Smart Network Infrastructure Planner")
st.sidebar.header("Input Parameters")

# User Inputs from Sidebar
budget = st.sidebar.number_input("Total Budget (in $1000s):", min_value=10, max_value=1000, step=10)
priority_area = st.sidebar.selectbox("Priority Area:", ["Rural", "Urban", "Suburban"])
signal_threshold = st.sidebar.slider("Signal Strength Threshold (dBm):", min_value=-120, max_value=-30, value=-80)
terrain_weight = st.sidebar.slider("Terrain Difficulty Weight:", min_value=0.0, max_value=1.0, value=0.5)
cost_weight = st.sidebar.slider("Cost Weight:", min_value=0.0, max_value=1.0, value=0.5)
include_human_readable = st.sidebar.checkbox("Include Human-Readable Info", value=True)

# Display Dataset Options
data_to_view = st.sidebar.selectbox("Select Dataset to View:", ["Network Insights", "Filtered Terrain Data"])

# Terrain and Connectivity Analysis Section
st.header("Terrain and Connectivity Analysis")

# Simulate Terrain Data
def generate_terrain_data():
    np.random.seed(42)
    data = {
        "Region": [f"Region-{i}" for i in range(1, 11)],
        "Latitude": np.random.uniform(30.0, 50.0, size=10),
        "Longitude": np.random.uniform(-120.0, -70.0, size=10),
        "Terrain Difficulty (0-10)": np.random.randint(1, 10, size=10),
        "Signal Strength (dBm)": np.random.randint(-120, -30, size=10),
        "Cost ($1000s)": np.random.randint(50, 200, size=10),
        "Priority Area": np.random.choice(["Rural", "Urban", "Suburban"], size=10),
        "Description": [
            "Flat area with minimal obstacles",
            "Hilly terrain, moderate construction difficulty",
            "Dense urban area with high costs",
            "Suburban area, balanced terrain",
            "Mountainous region, challenging setup",
            "Remote rural area, sparse population",
            "Coastal area, potential for high signal interference",
            "Industrial zone, requires robust infrastructure",
            "Dense forest region, significant signal attenuation",
            "Open plains, optimal for cost-effective deployment"
        ]
    }
    return pd.DataFrame(data)

terrain_data = generate_terrain_data()

# Reverse Geocoding Function
def get_location_name(lat, lon):
    try:
        location = geolocator.reverse((lat, lon), exactly_one=True)
        return location.address if location else "Unknown Location"
    except Exception as e:
        return "Error: Unable to fetch location"

# Add Location Name to Filtered Data
if include_human_readable:
    filtered_data = terrain_data[
        (terrain_data["Signal Strength (dBm)"] >= signal_threshold) & 
        (terrain_data["Cost ($1000s)"] <= budget) & 
        (terrain_data["Priority Area"] == priority_area)
    ]
    filtered_data["Location Name"] = filtered_data.apply(
        lambda row: get_location_name(row["Latitude"], row["Longitude"]), axis=1
    )
else:
    filtered_data = terrain_data[
        (terrain_data["Signal Strength (dBm)"] >= signal_threshold) & 
        (terrain_data["Cost ($1000s)"] <= budget) & 
        (terrain_data["Priority Area"] == priority_area)
    ]

# Add Composite Score for Ranking
filtered_data["Composite Score"] = (
    (1 - terrain_weight) * filtered_data["Signal Strength (dBm)"] + 
    (terrain_weight) * (10 - filtered_data["Terrain Difficulty (0-10)"]) - 
    (cost_weight) * filtered_data["Cost ($1000s)"]
)

# Display Selected Dataset
if data_to_view == "Network Insights":
    st.subheader("Network Insights Dataset")
    st.dataframe(network_insights)
elif data_to_view == "Filtered Terrain Data":
    st.subheader("Filtered Terrain Data")
    columns_to_display = [
        "Region", "Location Name", "Priority Area", "Signal Strength (dBm)",
        "Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score"
    ] if include_human_readable else [
        "Region", "Priority Area", "Signal Strength (dBm)", "Cost ($1000s)", "Terrain Difficulty (0-10)", "Description", "Composite Score"
    ]
    st.dataframe(filtered_data[columns_to_display])

# Map Visualization
st.header("Geographical Map of Regions")
if not filtered_data.empty:
    map_center = [filtered_data["Latitude"].mean(), filtered_data["Longitude"].mean()]
    region_map = folium.Map(location=map_center, zoom_start=6)

    for _, row in filtered_data.iterrows():
        folium.Marker(
            location=[row["Latitude"], row["Longitude"]],
            popup=(
                f"<b>Region:</b> {row['Region']}<br>"
                f"<b>Location:</b> {row.get('Location Name', 'N/A')}<br>"
                f"<b>Description:</b> {row['Description']}<br>"
                f"<b>Signal Strength:</b> {row['Signal Strength (dBm)']} dBm<br>"
                f"<b>Cost:</b> ${row['Cost ($1000s)']}k<br>"
                f"<b>Terrain Difficulty:</b> {row['Terrain Difficulty (0-10)']}"
            ),
            icon=folium.Icon(color="blue", icon="info-sign")
        ).add_to(region_map)

    st_folium(region_map, width=700, height=500)
else:
    st.write("No regions match the selected criteria.")

# Visualization
fig = px.scatter(
    filtered_data,
    x="Cost ($1000s)",
    y="Signal Strength (dBm)",
    size="Terrain Difficulty (0-10)",
    color="Region",
    title="Signal Strength vs. Cost",
    labels={
        "Cost ($1000s)": "Cost in $1000s",
        "Signal Strength (dBm)": "Signal Strength in dBm",
    },
)
st.plotly_chart(fig)

# Recommendation Engine
st.header("Deployment Recommendations")

def recommend_deployment(data):
    if data.empty:
        return "No viable deployment regions within the specified parameters."
    best_region = data.loc[data["Composite Score"].idxmax()]
    return f"Recommended Region: {best_region['Region']} with Composite Score: {best_region['Composite Score']:.2f}, Signal Strength: {best_region['Signal Strength (dBm)']} dBm, Terrain Difficulty: {best_region['Terrain Difficulty (0-10)']}, and Estimated Cost: ${best_region['Cost ($1000s)']}k\nDescription: {best_region['Description']}\nLocation Name: {best_region.get('Location Name', 'N/A')}"

recommendation = recommend_deployment(filtered_data)
st.subheader(recommendation)

# Footer
st.sidebar.markdown("---")
st.sidebar.markdown(
    "**Developed for Hackathon using Hugging Face Infinite Dataset Hub**\n\n[Visit Hugging Face](https://huggingface.co)")