File size: 17,529 Bytes
744b222 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
from datetime import datetime
from typing import List, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st
import yfinance as yf
from ta.momentum import RSIIndicator
def download_stocks(tickers: List[str]) -> List[pd.DataFrame]:
"""
Downloads stock data from Yahoo Finance.
Args:
tickers: A list of stock tickers.
Returns:
A list of Pandas DataFrames, one for each stock.
"""
# Create a list of DataFrames.
df_list = []
# Iterate over the tickers.
for ticker in tickers:
# Download the stock data.
df = yf.download(ticker)
# Add the DataFrame to the list.
df_list.append(df.tail(255 * 8))
return df_list
def plot_mkt_cap(df: pd.DataFrame) -> px.treemap:
"""Takes in a DataFrame of stock information and plots market cap treemap
Args:
df: pandas DataFrame containing the following columns - ticker, sector, market_cap, colors, delta
Returns:
fig : Plotly express treemap figure object showing the market cap and color-coded
according to the input "colors" column.
"""
# Build and return the treemap figure
fig = px.treemap(
df,
path=[px.Constant("all"), "sector", "ticker"],
values="market_cap",
color="colors",
hover_data={"delta": ":.2p"},
)
return fig
def plot_returns(table: pd.DataFrame) -> plt.Figure:
"""
This function plots the daily returns of each stock contained in the DataFrame `table`.
Returns:
fig: A `Figure` instance representing the entire figure.
"""
# Calculate the daily percentage change of all stocks using the `pct_change` method.
returns = table.pct_change()
# Plot each stock's daily returns on the same graph using a for loop and the `plot` method of pyplot object.
fig, ax = plt.subplots(figsize=(14, 7))
for c in returns.columns.values:
ax.plot(returns.index, returns[c], lw=3, alpha=0.8, label=c)
# Add legend and y-axis label to the plot.
ax.legend(loc="upper right", fontsize=12)
ax.set_ylabel("daily returns")
return fig
def portfolio_annualised_performance(
weights: np.ndarray, mean_returns: np.ndarray, cov_matrix: np.ndarray
) -> Tuple[float, float]:
"""
Given the weights of the assets in the portfolio, their mean returns, and their covariance matrix,
this function computes and returns the annualized performance of the portfolio in terms of its
standard deviation (volatility) and expected returns.
Args:
weights (np.ndarray): The weights of the assets in the portfolio.
Each weight corresponds to the proportion of the investor's total
investment in the corresponding asset.
mean_returns (np.ndarray): The mean (expected) returns of the assets.
cov_matrix (np.ndarray): The covariance matrix of the asset returns. Each entry at the
intersection of a row and a column represents the covariance
between the returns of the asset corresponding to that row
and the asset corresponding to that column.
Returns:
Tuple of portfolio volatility (standard deviation) and portfolio expected return, both annualized.
"""
# Annualize portfolio returns by summing up the products of the mean returns and weights of each asset and then multiplying by 252
# (number of trading days in a year)
returns = np.sum(mean_returns * weights) * 252
# Compute portfolio volatility (standard deviation) by dot multiplying the weights transpose and the dot product of covariance matrix
# and weights. Then take the square root to get the standard deviation and multiply by square root of 252 to annualize it.
std = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) * np.sqrt(252)
return std, returns
def random_portfolios(
num_portfolios: int,
num_weights: int,
mean_returns: np.ndarray,
cov_matrix: np.ndarray,
risk_free_rate: float,
) -> Tuple[np.ndarray, List[np.ndarray]]:
"""
Generate random portfolios and calculate their standard deviation, returns and Sharpe ratio.
Args:
num_portfolios (int): The number of random portfolios to generate.
mean_returns (np.ndarray): The mean (expected) returns of the assets.
cov_matrix (np.ndarray): The covariance matrix of the asset returns. Each entry at the
intersection of a row and a column represents the covariance
between the returns of the asset corresponding to that row
and the asset corresponding to that column.
risk_free_rate (float): The risk-free rate of return.
Returns:
Tuple of results and weights_record.
results (np.ndarray): A 3D array with standard deviation, returns and Sharpe ratio of the portfolios.
weights_record (List[np.ndarray]): A list with the weights of the assets in each portfolio.
"""
# Initialize results array with zeros
results = np.zeros((3, num_portfolios))
# Initialize weights record list
weights_record = []
# Loop over the range of num_portfolios
for i in np.arange(num_portfolios):
# Generate random weights
weights = np.random.random(num_weights)
# Normalize weights
weights /= np.sum(weights)
# Record weights
weights_record.append(weights)
# Calculate portfolio standard deviation and returns
portfolio_std_dev, portfolio_return = portfolio_annualised_performance(
weights, mean_returns, cov_matrix
)
# Store standard deviation, returns and Sharpe ratio in results
results[0, i] = portfolio_std_dev
results[1, i] = portfolio_return
results[2, i] = (portfolio_return - risk_free_rate) / portfolio_std_dev
return results, weights_record
def display_simulated_ef_with_random(
table: pd.DataFrame,
mean_returns: List[float],
cov_matrix: np.ndarray,
num_portfolios: int,
risk_free_rate: float,
) -> plt.Figure:
"""
This function displays a simulated efficient frontier plot based on randomly generated portfolios with the specified parameters.
Args:
- mean_returns (List): A list of mean returns for each security or asset in the portfolio.
- cov_matrix (ndarray): A covariance matrix for the securities or assets in the portfolio.
- num_portfolios (int): The number of random portfolios to generate.
- risk_free_rate (float): The risk-free rate of return.
Returns:
- fig (plt.Figure): A pyplot figure object
"""
# Generate random portfolios using the specified parameters
results, weights = random_portfolios(
num_portfolios, len(mean_returns), mean_returns, cov_matrix, risk_free_rate
)
# Find the maximum Sharpe ratio portfolio and the portfolio with minimum volatility
max_sharpe_idx = np.argmax(results[2])
sdp, rp = results[0, max_sharpe_idx], results[1, max_sharpe_idx]
# Create a DataFrame of the maximum Sharpe ratio allocation
max_sharpe_allocation = pd.DataFrame(
weights[max_sharpe_idx], index=table.columns, columns=["allocation"]
)
max_sharpe_allocation.allocation = [
round(i * 100, 2) for i in max_sharpe_allocation.allocation
]
max_sharpe_allocation = max_sharpe_allocation.T
# Find index of the portfolio with minimum volatility
min_vol_idx = np.argmin(results[0])
sdp_min, rp_min = results[0, min_vol_idx], results[1, min_vol_idx]
# Create a DataFrame of the minimum volatility allocation
min_vol_allocation = pd.DataFrame(
weights[min_vol_idx], index=table.columns, columns=["allocation"]
)
min_vol_allocation.allocation = [
round(i * 100, 2) for i in min_vol_allocation.allocation
]
min_vol_allocation = min_vol_allocation.T
# Generate and plot the efficient frontier
fig, ax = plt.subplots(figsize=(10, 7))
ax.scatter(
results[0, :],
results[1, :],
c=results[2, :],
cmap="YlGnBu",
marker="o",
s=10,
alpha=0.3,
)
ax.scatter(sdp, rp, marker="*", color="r", s=500, label="Maximum Sharpe ratio")
ax.scatter(
sdp_min, rp_min, marker="*", color="g", s=500, label="Minimum volatility"
)
ax.set_title("Simulated Portfolio Optimization based on Efficient Frontier")
ax.set_xlabel("Annual volatility")
ax.set_ylabel("Annual returns")
ax.legend(labelspacing=0.8)
return fig, {
"Annualised Return (efficient portfolio)": round(rp, 2),
"Annualised Volatility (efficient portfolio)": round(sdp, 2),
"Max Sharpe Allocation": max_sharpe_allocation,
"Max Sharpe Allocation in Percentile": max_sharpe_allocation.div(
max_sharpe_allocation.sum(axis=1), axis=0
),
"Annualised Return (min variance portfolio)": round(rp_min, 2),
"Annualised Volatility (min variance portfolio)": round(sdp_min, 2),
"Min Volatility Allocation": min_vol_allocation,
"Min Volatility Allocation in Percentile": min_vol_allocation.div(
min_vol_allocation.sum(axis=1), axis=0
),
}
def entry_strategy(
start_date="2013-01-01",
end_date="2019-12-6",
tickers="AAPL",
thresholds="10, 20, 30",
buy_threshold=20,
sell_threshold=80,
):
rsi_threshold_1 = int(thresholds.split(",")[0])
rsi_threshold_2 = int(thresholds.split(",")[1])
rsi_threshold_3 = int(thresholds.split(",")[2])
# Conditional Buy/Sell => Signals
stock = yf.download(tickers, start_date, end_date)
rsiData1 = RSIIndicator(stock["Close"], rsi_threshold_1, True)
rsiData2 = RSIIndicator(stock["Close"], rsi_threshold_2, True)
rsiData3 = RSIIndicator(stock["Close"], rsi_threshold_3, True)
# Conditional Buy/Sell => Signals
conditionalBuy1 = np.where(rsiData1.rsi() < buy_threshold, stock["Close"], np.nan)
conditionalSell1 = np.where(rsiData1.rsi() > sell_threshold, stock["Close"], np.nan)
conditionalBuy2 = np.where(rsiData2.rsi() < buy_threshold, stock["Close"], np.nan)
conditionalSell2 = np.where(rsiData2.rsi() > sell_threshold, stock["Close"], np.nan)
conditionalBuy3 = np.where(rsiData3.rsi() < buy_threshold, stock["Close"], np.nan)
conditionalSell3 = np.where(rsiData3.rsi() > sell_threshold, stock["Close"], np.nan)
# RSI Construction
stock["RSI1"] = rsiData1.rsi()
stock["RSI2"] = rsiData2.rsi()
stock["RSI3"] = rsiData3.rsi()
stock["RSI1_Buy"] = conditionalBuy1
stock["RSI1_Sell"] = conditionalSell1
stock["RSI2_Buy"] = conditionalBuy2
stock["RSI2_Sell"] = conditionalSell2
stock["RSI3_Buy"] = conditionalBuy3
stock["RSI3_Sell"] = conditionalSell3
strategy = "RSI"
title = f"Close Price Buy/Sell Signals using WYN Entry Strategy"
fig, axs = plt.subplots(2, sharex=True, figsize=(13, 9))
if not stock["RSI1_Buy"].isnull().all():
axs[0].scatter(
stock.index,
stock["RSI1_Buy"],
color="green",
label="Buy Signal 1",
marker="^",
alpha=1,
)
if not stock["RSI1_Sell"].isnull().all():
axs[0].scatter(
stock.index,
stock["RSI1_Sell"],
color="red",
label="Sell Signal 1",
marker="v",
alpha=1,
)
axs[0].plot(stock["Close"], label="Close Price", color="blue", alpha=0.35)
if not stock["RSI2_Buy"].isnull().all():
axs[0].scatter(
stock.index,
stock["RSI2_Buy"],
color="blue",
label="Buy Signal 2",
marker="^",
alpha=1,
)
if not stock["RSI2_Sell"].isnull().all():
axs[0].scatter(
stock.index,
stock["RSI2_Sell"],
color="purple",
label="Sell Signal 2",
marker="v",
alpha=1,
)
axs[0].plot(stock["Close"], label="Close Price", color="blue", alpha=0.35)
if not stock["RSI3_Buy"].isnull().all():
axs[0].scatter(
stock.index,
stock["RSI3_Buy"],
color="cyan",
label="Buy Signal 3",
marker="^",
alpha=1,
)
if not stock["RSI3_Sell"].isnull().all():
axs[0].scatter(
stock.index,
stock["RSI3_Sell"],
color="pink",
label="Sell Signal 3",
marker="v",
alpha=1,
)
axs[0].plot(stock["Close"], label="Close Price", color="blue", alpha=0.35)
# plt.xticks(rotation=45)
axs[0].set_title(title)
axs[0].set_xlabel("Date", fontsize=18)
axs[0].set_ylabel("Close Price", fontsize=18)
axs[0].legend(loc="upper left")
axs[0].grid()
axs[1].plot(stock["RSI1"], label="RSI", color="green")
axs[1].plot(stock["RSI2"], label="RSI", color="blue")
axs[1].plot(stock["RSI3"], label="RSI", color="red")
return fig
def entry_strategy_plotly(
start_date="2013-01-01",
end_date="2019-12-6",
tickers="AAPL",
thresholds="10, 20, 30",
buy_threshold=20,
sell_threshold=80,
):
rsi_threshold_1 = int(thresholds.split(",")[0])
rsi_threshold_2 = int(thresholds.split(",")[1])
rsi_threshold_3 = int(thresholds.split(",")[2])
# Conditional Buy/Sell => Signals
stock = yf.download(tickers, start_date, end_date)
rsiData1 = RSIIndicator(stock["Close"], rsi_threshold_1, True)
rsiData2 = RSIIndicator(stock["Close"], rsi_threshold_2, True)
rsiData3 = RSIIndicator(stock["Close"], rsi_threshold_3, True)
# Conditional Buy/Sell => Signals
stock["RSI1_Buy"] = np.where(rsiData1.rsi() < buy_threshold, stock["Close"], np.nan)
stock["RSI1_Sell"] = np.where(rsiData1.rsi() > sell_threshold, stock["Close"], np.nan)
stock["RSI2_Buy"] = np.where(rsiData2.rsi() < buy_threshold, stock["Close"], np.nan)
stock["RSI2_Sell"] = np.where(rsiData2.rsi() > sell_threshold, stock["Close"], np.nan)
stock["RSI3_Buy"] = np.where(rsiData3.rsi() < buy_threshold, stock["Close"], np.nan)
stock["RSI3_Sell"] = np.where(rsiData3.rsi() > sell_threshold, stock["Close"], np.nan)
# Create a subplot figure with secondary Y-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Add traces for close prices
fig.add_trace(go.Scatter(x=stock.index, y=stock["Close"], name="Close Price", line=dict(color='blue', width=0.5)), secondary_y=False)
# Add traces for buy and sell signals
fig.add_trace(go.Scatter(x=stock.index, y=stock["RSI1_Buy"], mode='markers', name='Buy Signal (light)', marker=dict(color='green', size=6, symbol='triangle-up')), secondary_y=False)
fig.add_trace(go.Scatter(x=stock.index, y=stock["RSI1_Sell"], mode='markers', name='Sell Signal (light)', marker=dict(color='red', size=6, symbol='triangle-down')), secondary_y=False)
fig.add_trace(go.Scatter(x=stock.index, y=stock["RSI2_Buy"], mode='markers', name='Buy Signal (medium)', marker=dict(color='blue', size=6, symbol='triangle-up')), secondary_y=False)
fig.add_trace(go.Scatter(x=stock.index, y=stock["RSI2_Sell"], mode='markers', name='Sell Signal (medium)', marker=dict(color='purple', size=6, symbol='triangle-down')), secondary_y=False)
fig.add_trace(go.Scatter(x=stock.index, y=stock["RSI3_Buy"], mode='markers', name='Buy Signal (heavy)', marker=dict(color='cyan', size=6, symbol='triangle-up')), secondary_y=False)
fig.add_trace(go.Scatter(x=stock.index, y=stock["RSI3_Sell"], mode='markers', name='Sell Signal (heavy)', marker=dict(color='pink', size=6, symbol='triangle-down')), secondary_y=False)
# Add traces for RSI
# fig.add_trace(go.Scatter(x=stock.index, y=rsiData1.rsi(), name="RSI 1", line=dict(color='green')), secondary_y=True)
# fig.add_trace(go.Scatter(x=stock.index, y=rsiData2.rsi(), name="RSI 2", line=dict(color='blue')), secondary_y=True)
# fig.add_trace(go.Scatter(x=stock.index, y=rsiData3.rsi(), name="RSI 3", line=dict(color='red')), secondary_y=True)
# Set figure title, and axis titles
fig.update_layout(title_text='Close Price Buy/Sell Signals using WYN Entry Strategy')
fig.update_xaxes(title_text='Date')
fig.update_yaxes(title_text='<b>Close Price</b>', secondary_y=False)
fig.update_yaxes(title_text='<b>RSI</b>', secondary_y=True)
return fig
def get_stock_info(ticker: str) -> dict:
# Get More Data:
tck = yf.Ticker(ticker)
ALL_DATA = {
'get stock info': tck.info,
'get historical market data': tck.history(period="max"),
'show actions (dividends, splits)': tck.actions,
'show dividends': tck.dividends,
'show splits': tck.splits,
'show financials': [tck.financials, tck.quarterly_financials],
'show balance sheet': [tck.balance_sheet, tck.quarterly_balance_sheet],
'show cashflow': [tck.cashflow, tck.quarterly_cashflow],
# 'show earnings': [tck.earnings, tck.quarterly_earnings],
# 'show sustainability': tck.sustainability,
# 'show analysts recommendations': tck.recommendations,
# 'show next event (earnings, etc)': tck.calendar
}
return ALL_DATA |