File size: 12,784 Bytes
59d3355
 
 
 
 
 
 
6738563
 
 
59d3355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6738563
59d3355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6738563
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import re

import keras
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from keras import layers
from keras.applications import efficientnet
from keras.layers import TextVectorization

keras.utils.set_random_seed(111)


# Desired image dimensions
IMAGE_SIZE = (299, 299)

# Dimension for the image embeddings and token embeddings
EMBED_DIM = 512

# Per-layer units in the feed-forward network
FF_DIM = 512

# Fixed length allowed for any sequence
SEQ_LENGTH = 25

# Vocabulary size
VOCAB_SIZE = 10000

# Data augmentation for image data
image_augmentation = keras.Sequential(
    [
        layers.RandomFlip("horizontal"),
        layers.RandomRotation(0.2),
        layers.RandomContrast(0.3),
    ]
)


def get_cnn_model():
    base_model = efficientnet.EfficientNetB0(
        input_shape=(*IMAGE_SIZE, 3),
        include_top=False,
        weights="imagenet",
    )
    # We freeze our feature extractor
    base_model.trainable = False
    base_model_out = base_model.output
    base_model_out = layers.Reshape((-1, base_model_out.shape[-1]))(base_model_out)
    cnn_model = keras.models.Model(base_model.input, base_model_out)
    return cnn_model


class TransformerEncoderBlock(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.0
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.dense_1 = layers.Dense(embed_dim, activation="relu")

    def call(self, inputs, training, mask=None):
        inputs = self.layernorm_1(inputs)
        inputs = self.dense_1(inputs)

        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            attention_mask=None,
            training=training,
        )
        out_1 = self.layernorm_2(inputs + attention_output_1)
        return out_1


class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
        super().__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=embed_dim
        )
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim
        self.embed_scale = tf.math.sqrt(tf.cast(embed_dim, tf.float32))

    def call(self, inputs):
        length = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=length, delta=1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_tokens = embedded_tokens * self.embed_scale
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        return tf.math.not_equal(inputs, 0)


class TransformerDecoderBlock(layers.Layer):
    def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.ff_dim = ff_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.ffn_layer_1 = layers.Dense(ff_dim, activation="relu")
        self.ffn_layer_2 = layers.Dense(embed_dim)

        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()

        self.embedding = PositionalEmbedding(
            embed_dim=EMBED_DIM,
            sequence_length=SEQ_LENGTH,
            vocab_size=VOCAB_SIZE,
        )
        self.out = layers.Dense(VOCAB_SIZE, activation="softmax")

        self.dropout_1 = layers.Dropout(0.3)
        self.dropout_2 = layers.Dropout(0.5)
        self.supports_masking = True

    def call(self, inputs, encoder_outputs, training, mask=None):
        inputs = self.embedding(inputs)
        causal_mask = self.get_causal_attention_mask(inputs)

        if mask is not None:
            padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
            combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
            combined_mask = tf.minimum(combined_mask, causal_mask)

        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            attention_mask=combined_mask,
            training=training,
        )
        out_1 = self.layernorm_1(inputs + attention_output_1)

        attention_output_2 = self.attention_2(
            query=out_1,
            value=encoder_outputs,
            key=encoder_outputs,
            attention_mask=padding_mask,
            training=training,
        )
        out_2 = self.layernorm_2(out_1 + attention_output_2)

        ffn_out = self.ffn_layer_1(out_2)
        ffn_out = self.dropout_1(ffn_out, training=training)
        ffn_out = self.ffn_layer_2(ffn_out)

        ffn_out = self.layernorm_3(ffn_out + out_2, training=training)
        ffn_out = self.dropout_2(ffn_out, training=training)
        preds = self.out(ffn_out)
        return preds

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [
                tf.expand_dims(batch_size, -1),
                tf.constant([1, 1], dtype=tf.int32),
            ],
            axis=0,
        )
        return tf.tile(mask, mult)


class ImageCaptioningModel(keras.Model):
    def __init__(
        self,
        cnn_model,
        encoder,
        decoder,
        num_captions_per_image=5,
        image_aug=None,
    ):
        super().__init__()
        self.cnn_model = cnn_model
        self.encoder = encoder
        self.decoder = decoder
        self.loss_tracker = keras.metrics.Mean(name="loss")
        self.acc_tracker = keras.metrics.Mean(name="accuracy")
        self.num_captions_per_image = num_captions_per_image
        self.image_aug = image_aug

    def calculate_loss(self, y_true, y_pred, mask):
        loss = self.loss(y_true, y_pred)
        mask = tf.cast(mask, dtype=loss.dtype)
        loss *= mask
        return tf.reduce_sum(loss) / tf.reduce_sum(mask)

    def calculate_accuracy(self, y_true, y_pred, mask):
        accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
        accuracy = tf.math.logical_and(mask, accuracy)
        accuracy = tf.cast(accuracy, dtype=tf.float32)
        mask = tf.cast(mask, dtype=tf.float32)
        return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)

    def _compute_caption_loss_and_acc(self, img_embed, batch_seq, training=True):
        encoder_out = self.encoder(img_embed, training=training)
        batch_seq_inp = batch_seq[:, :-1]
        batch_seq_true = batch_seq[:, 1:]
        mask = tf.math.not_equal(batch_seq_true, 0)
        batch_seq_pred = self.decoder(
            batch_seq_inp, encoder_out, training=training, mask=mask
        )
        loss = self.calculate_loss(batch_seq_true, batch_seq_pred, mask)
        acc = self.calculate_accuracy(batch_seq_true, batch_seq_pred, mask)
        return loss, acc

    def train_step(self, batch_data):
        batch_img, batch_seq = batch_data
        batch_loss = 0
        batch_acc = 0

        if self.image_aug:
            batch_img = self.image_aug(batch_img)

        # 1. Get image embeddings
        img_embed = self.cnn_model(batch_img)

        # 2. Pass each of the five captions one by one to the decoder
        # along with the encoder outputs and compute the loss as well as accuracy
        # for each caption.
        for i in range(self.num_captions_per_image):
            with tf.GradientTape() as tape:
                loss, acc = self._compute_caption_loss_and_acc(
                    img_embed, batch_seq[:, i, :], training=True
                )

                # 3. Update loss and accuracy
                batch_loss += loss
                batch_acc += acc

            # 4. Get the list of all the trainable weights
            train_vars = (
                self.encoder.trainable_variables + self.decoder.trainable_variables
            )

            # 5. Get the gradients
            grads = tape.gradient(loss, train_vars)

            # 6. Update the trainable weights
            self.optimizer.apply_gradients(zip(grads, train_vars))

        # 7. Update the trackers
        batch_acc /= float(self.num_captions_per_image)
        self.loss_tracker.update_state(batch_loss)
        self.acc_tracker.update_state(batch_acc)

        # 8. Return the loss and accuracy values
        return {
            "loss": self.loss_tracker.result(),
            "acc": self.acc_tracker.result(),
        }

    def test_step(self, batch_data):
        batch_img, batch_seq = batch_data
        batch_loss = 0
        batch_acc = 0

        # 1. Get image embeddings
        img_embed = self.cnn_model(batch_img)

        # 2. Pass each of the five captions one by one to the decoder
        # along with the encoder outputs and compute the loss as well as accuracy
        # for each caption.
        for i in range(self.num_captions_per_image):
            loss, acc = self._compute_caption_loss_and_acc(
                img_embed, batch_seq[:, i, :], training=False
            )

            # 3. Update batch loss and batch accuracy
            batch_loss += loss
            batch_acc += acc

        batch_acc /= float(self.num_captions_per_image)

        # 4. Update the trackers
        self.loss_tracker.update_state(batch_loss)
        self.acc_tracker.update_state(batch_acc)

        # 5. Return the loss and accuracy values
        return {
            "loss": self.loss_tracker.result(),
            "acc": self.acc_tracker.result(),
        }

    @property
    def metrics(self):
        # We need to list our metrics here so the `reset_states()` can be
        # called automatically.
        return [self.loss_tracker, self.acc_tracker]


strip_chars = "!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"
strip_chars = strip_chars.replace("<", "")
strip_chars = strip_chars.replace(">", "")


def custom_standardization(input_string):
    lowercase = tf.strings.lower(input_string)
    return tf.strings.regex_replace(lowercase, "[%s]" % re.escape(strip_chars), "")


vectorization = TextVectorization(
    max_tokens=VOCAB_SIZE,
    output_mode="int",
    output_sequence_length=SEQ_LENGTH,
    standardize=custom_standardization,
)


def generate_caption(caption_model: None):
    # Select a random image from the validation dataset
    # sample_img = np.random.choice(valid_images)

    # # Read the image from the disk
    # sample_img = decode_and_resize(sample_img)
    # img = sample_img.numpy().clip(0, 255).astype(np.uint8)
    # plt.imshow(img)
    # plt.show()

    # Pass the image to the CNN
    # img = tf.expand_dims(sample_img, 0)
    # TOOD
    img = None
    img = caption_model.cnn_model(img)

    # Pass the image features to the Transformer encoder
    encoded_img = caption_model.encoder(img, training=False)

    # Generate the caption using the Transformer decoder
    decoded_caption = "<start> "
    vocab = vectorization.get_vocabulary()
    index_lookup = dict(zip(range(len(vocab)), vocab))
    max_decoded_sentence_length = SEQ_LENGTH - 1
    for i in range(max_decoded_sentence_length):
        tokenized_caption = vectorization([decoded_caption])[:, :-1]
        mask = tf.math.not_equal(tokenized_caption, 0)
        predictions = caption_model.decoder(
            tokenized_caption, encoded_img, training=False, mask=mask
        )
        sampled_token_index = np.argmax(predictions[0, i, :])
        sampled_token = index_lookup[sampled_token_index]
        if sampled_token == "<end>":
            break
        decoded_caption += " " + sampled_token

    decoded_caption = decoded_caption.replace("<start> ", "")
    decoded_caption = decoded_caption.replace(" <end>", "").strip()
    print("Predicted Caption: ", decoded_caption)