Spaces:
Runtime error
Runtime error
Update doc_searcher.py
Browse files- doc_searcher.py +34 -20
doc_searcher.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from qdrant_client import QdrantClient
|
|
|
2 |
from fastembed import SparseTextEmbedding, LateInteractionTextEmbedding
|
3 |
from qdrant_client import QdrantClient, models
|
4 |
from sentence_transformers import SentenceTransformer
|
@@ -13,7 +14,7 @@ class DocSearcher:
|
|
13 |
self.late_interaction_model = LateInteractionTextEmbedding(LATE_INTERACTION_MODEL)
|
14 |
self.qdrant_client = QdrantClient(QDRANT_URL,api_key=QDRANT_API_KEY,timeout=30)
|
15 |
|
16 |
-
async def search(self, text: str):
|
17 |
|
18 |
dense_query = self.dense_model.encode(text).tolist()
|
19 |
sparse_query = next(self.sparse_model.query_embed(text))
|
@@ -22,39 +23,52 @@ class DocSearcher:
|
|
22 |
models.Prefetch(
|
23 |
query=dense_query,
|
24 |
using=DENSE_MODEL,
|
25 |
-
|
26 |
-
quantization=models.QuantizationSearchParams(
|
27 |
-
rescore=False,
|
28 |
-
),
|
29 |
-
),
|
30 |
-
limit=200
|
31 |
),
|
32 |
models.Prefetch(
|
33 |
query=models.SparseVector(**sparse_query.as_object()),
|
34 |
using=SPARSE_MODEL,
|
35 |
-
|
36 |
-
quantization=models.QuantizationSearchParams(
|
37 |
-
rescore=False,
|
38 |
-
),
|
39 |
-
),
|
40 |
-
limit=200
|
41 |
)
|
42 |
]
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
search_result = self.qdrant_client.query_points(
|
45 |
collection_name= self.collection_name,
|
46 |
-
|
47 |
-
hnsw_ef=128,
|
48 |
-
quantization=models.QuantizationSearchParams(
|
49 |
-
rescore=True,
|
50 |
-
),
|
51 |
-
),
|
52 |
prefetch=prefetch,
|
53 |
query=models.FusionQuery(
|
54 |
fusion=models.Fusion.RRF,
|
55 |
),
|
56 |
with_payload=True,
|
57 |
-
limit = 10
|
|
|
58 |
).points
|
59 |
|
60 |
data = []
|
|
|
1 |
from qdrant_client import QdrantClient
|
2 |
+
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
3 |
from fastembed import SparseTextEmbedding, LateInteractionTextEmbedding
|
4 |
from qdrant_client import QdrantClient, models
|
5 |
from sentence_transformers import SentenceTransformer
|
|
|
14 |
self.late_interaction_model = LateInteractionTextEmbedding(LATE_INTERACTION_MODEL)
|
15 |
self.qdrant_client = QdrantClient(QDRANT_URL,api_key=QDRANT_API_KEY,timeout=30)
|
16 |
|
17 |
+
async def search(self, text: str,type:int, law_type: str | None = None, offset: int = 0):
|
18 |
|
19 |
dense_query = self.dense_model.encode(text).tolist()
|
20 |
sparse_query = next(self.sparse_model.query_embed(text))
|
|
|
23 |
models.Prefetch(
|
24 |
query=dense_query,
|
25 |
using=DENSE_MODEL,
|
26 |
+
limit=100
|
|
|
|
|
|
|
|
|
|
|
27 |
),
|
28 |
models.Prefetch(
|
29 |
query=models.SparseVector(**sparse_query.as_object()),
|
30 |
using=SPARSE_MODEL,
|
31 |
+
limit=100
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
]
|
34 |
|
35 |
+
if type == 2:
|
36 |
+
filter = None
|
37 |
+
elif type == 1 and law_type is not None:
|
38 |
+
filter = Filter(
|
39 |
+
must=[
|
40 |
+
FieldCondition(
|
41 |
+
key="tip_dokumenta",
|
42 |
+
match=MatchValue(value=type)
|
43 |
+
),
|
44 |
+
FieldCondition(
|
45 |
+
key="vrsta_akta",
|
46 |
+
match=MatchValue(value=law_type)
|
47 |
+
),
|
48 |
+
],
|
49 |
+
must_not=[
|
50 |
+
FieldCondition(key="status", match=MatchValue(value="Nevažeći")),
|
51 |
+
]
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
filter = Filter(
|
55 |
+
must=[
|
56 |
+
FieldCondition(
|
57 |
+
key="tip_dokumenta",
|
58 |
+
match=MatchValue(value=type)
|
59 |
+
),
|
60 |
+
]
|
61 |
+
)
|
62 |
search_result = self.qdrant_client.query_points(
|
63 |
collection_name= self.collection_name,
|
64 |
+
query_filter=filter,
|
|
|
|
|
|
|
|
|
|
|
65 |
prefetch=prefetch,
|
66 |
query=models.FusionQuery(
|
67 |
fusion=models.Fusion.RRF,
|
68 |
),
|
69 |
with_payload=True,
|
70 |
+
limit = 10,
|
71 |
+
offset = offset
|
72 |
).points
|
73 |
|
74 |
data = []
|