Complete research-tracker-mcp with comprehensive MCP toolset
Browse filesEnhanced Features:
• 11 core inference functions with MCP best practices
• Comprehensive error handling and input validation
• Batch processing for scale research analysis
• Research relationship discovery across platforms
• URL validation utilities for data quality
• Advanced Gradio interface with organized testing
Technical Improvements:
• Standardized row data creation for backend consistency
• Robust authentication and error handling
• Detailed logging and debugging capabilities
• Professional docstrings with examples and type hints
• Input sanitization and security validation
MCP Functions Available:
• infer_authors, infer_paper_url, infer_code_repository
• infer_research_name, classify_research_url
• infer_organizations, infer_publication_date
• infer_model, infer_dataset, infer_space, infer_license
• batch_infer_research, find_research_relationships
• validate_research_urls
Complementary to hf-mcp-server: Provides cross-platform research
intelligence while hf-mcp-server handles direct HF API access.
🤖 Generated with [Claude Code](https://claude.ai/code)
|
@@ -24,9 +24,42 @@ if not HF_TOKEN:
|
|
| 24 |
logger.warning("HF_TOKEN not found in environment variables")
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 28 |
"""
|
| 29 |
-
Make a request to the research-tracker-backend.
|
| 30 |
|
| 31 |
Args:
|
| 32 |
endpoint: The backend endpoint to call (e.g., 'infer-authors')
|
|
@@ -38,6 +71,9 @@ def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
| 38 |
Raises:
|
| 39 |
Exception: If the request fails or returns an error
|
| 40 |
"""
|
|
|
|
|
|
|
|
|
|
| 41 |
url = f"{BACKEND_URL}/{endpoint}"
|
| 42 |
headers = {
|
| 43 |
"Content-Type": "application/json",
|
|
@@ -45,13 +81,82 @@ def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
| 45 |
}
|
| 46 |
|
| 47 |
try:
|
|
|
|
| 48 |
response = requests.post(url, json=data, headers=headers, timeout=REQUEST_TIMEOUT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
response.raise_for_status()
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
except requests.exceptions.Timeout:
|
| 52 |
-
raise Exception(f"
|
|
|
|
|
|
|
| 53 |
except requests.exceptions.RequestException as e:
|
| 54 |
-
raise Exception(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
def infer_authors(input_data: str) -> List[str]:
|
|
@@ -60,54 +165,65 @@ def infer_authors(input_data: str) -> List[str]:
|
|
| 60 |
|
| 61 |
This function attempts to extract author names from various inputs like
|
| 62 |
paper URLs (arXiv, Hugging Face papers), project pages, or repository links.
|
| 63 |
-
It uses the research-tracker-backend inference engine
|
|
|
|
| 64 |
|
| 65 |
Args:
|
| 66 |
-
input_data: A URL, paper title, or other research-related input
|
|
|
|
|
|
|
| 67 |
|
| 68 |
Returns:
|
| 69 |
-
A list of author names, or empty list if no authors found
|
|
|
|
| 70 |
|
| 71 |
Examples:
|
| 72 |
-
>>> infer_authors("https://arxiv.org/abs/
|
| 73 |
["Alexey Dosovitskiy", "Lucas Beyer", "Alexander Kolesnikov", ...]
|
| 74 |
|
| 75 |
>>> infer_authors("https://github.com/google-research/vision_transformer")
|
| 76 |
["Alexey Dosovitskiy", "Lucas Beyer", ...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
"""
|
| 78 |
-
if not input_data or not input_data.strip():
|
| 79 |
-
return []
|
| 80 |
-
|
| 81 |
try:
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
"Name": None,
|
| 85 |
-
"Authors": [],
|
| 86 |
-
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
| 87 |
-
"Code": input_data if "github.com" in input_data else None,
|
| 88 |
-
"Project": input_data if "github.io" in input_data else None,
|
| 89 |
-
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
| 90 |
-
"Model": input_data if "huggingface.co/models" in input_data else None,
|
| 91 |
-
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
| 92 |
-
}
|
| 93 |
|
| 94 |
-
#
|
| 95 |
-
|
| 96 |
-
row_data["Paper"] = input_data
|
| 97 |
|
| 98 |
# Call the backend
|
| 99 |
result = make_backend_request("infer-authors", row_data)
|
| 100 |
|
| 101 |
-
# Extract authors from response
|
| 102 |
authors = result.get("authors", [])
|
| 103 |
if isinstance(authors, str):
|
| 104 |
# Handle comma-separated string format
|
| 105 |
authors = [author.strip() for author in authors.split(",") if author.strip()]
|
| 106 |
elif not isinstance(authors, list):
|
|
|
|
| 107 |
authors = []
|
| 108 |
-
|
| 109 |
-
return authors
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
except Exception as e:
|
| 112 |
logger.error(f"Error inferring authors: {e}")
|
| 113 |
return []
|
|
@@ -296,68 +412,809 @@ def classify_research_url(url: str) -> str:
|
|
| 296 |
return "Unknown"
|
| 297 |
|
| 298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
# Create Gradio interface
|
| 300 |
def create_demo():
|
| 301 |
"""Create the Gradio demo interface for testing."""
|
| 302 |
|
| 303 |
with gr.Blocks(title="Research Tracker MCP Server") as demo:
|
| 304 |
gr.Markdown("# Research Tracker MCP Server")
|
| 305 |
-
gr.Markdown("Test the research inference utilities
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
return demo
|
| 363 |
|
|
|
|
| 24 |
logger.warning("HF_TOKEN not found in environment variables")
|
| 25 |
|
| 26 |
|
| 27 |
+
def validate_input(input_data: str, input_name: str = "input") -> str:
|
| 28 |
+
"""
|
| 29 |
+
Validate and sanitize input data.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
input_data: The input string to validate
|
| 33 |
+
input_name: Name of the input for error messages
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
Cleaned input string
|
| 37 |
+
|
| 38 |
+
Raises:
|
| 39 |
+
ValueError: If input is invalid
|
| 40 |
+
"""
|
| 41 |
+
if not input_data:
|
| 42 |
+
raise ValueError(f"{input_name} cannot be empty or None")
|
| 43 |
+
|
| 44 |
+
cleaned = input_data.strip()
|
| 45 |
+
if not cleaned:
|
| 46 |
+
raise ValueError(f"{input_name} cannot be empty after trimming")
|
| 47 |
+
|
| 48 |
+
# Basic URL validation if it looks like a URL
|
| 49 |
+
if cleaned.startswith(("http://", "https://")):
|
| 50 |
+
if len(cleaned) > 2000:
|
| 51 |
+
raise ValueError(f"{input_name} URL is too long (max 2000 characters)")
|
| 52 |
+
# Check for suspicious patterns
|
| 53 |
+
suspicious_patterns = ["javascript:", "data:", "file:", "ftp:"]
|
| 54 |
+
if any(pattern in cleaned.lower() for pattern in suspicious_patterns):
|
| 55 |
+
raise ValueError(f"{input_name} contains invalid URL scheme")
|
| 56 |
+
|
| 57 |
+
return cleaned
|
| 58 |
+
|
| 59 |
+
|
| 60 |
def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 61 |
"""
|
| 62 |
+
Make a request to the research-tracker-backend with comprehensive error handling.
|
| 63 |
|
| 64 |
Args:
|
| 65 |
endpoint: The backend endpoint to call (e.g., 'infer-authors')
|
|
|
|
| 71 |
Raises:
|
| 72 |
Exception: If the request fails or returns an error
|
| 73 |
"""
|
| 74 |
+
if not HF_TOKEN:
|
| 75 |
+
logger.warning("HF_TOKEN not available - backend requests may fail")
|
| 76 |
+
|
| 77 |
url = f"{BACKEND_URL}/{endpoint}"
|
| 78 |
headers = {
|
| 79 |
"Content-Type": "application/json",
|
|
|
|
| 81 |
}
|
| 82 |
|
| 83 |
try:
|
| 84 |
+
logger.debug(f"Making request to {endpoint} with data: {data}")
|
| 85 |
response = requests.post(url, json=data, headers=headers, timeout=REQUEST_TIMEOUT)
|
| 86 |
+
|
| 87 |
+
if response.status_code == 401:
|
| 88 |
+
raise Exception("Authentication failed - please check HF_TOKEN")
|
| 89 |
+
elif response.status_code == 403:
|
| 90 |
+
raise Exception("Access forbidden - insufficient permissions")
|
| 91 |
+
elif response.status_code == 404:
|
| 92 |
+
raise Exception(f"Backend endpoint {endpoint} not found")
|
| 93 |
+
elif response.status_code == 422:
|
| 94 |
+
raise Exception("Invalid request data format")
|
| 95 |
+
elif response.status_code >= 500:
|
| 96 |
+
raise Exception(f"Backend server error (status {response.status_code})")
|
| 97 |
+
|
| 98 |
response.raise_for_status()
|
| 99 |
+
result = response.json()
|
| 100 |
+
logger.debug(f"Backend response: {result}")
|
| 101 |
+
return result
|
| 102 |
+
|
| 103 |
except requests.exceptions.Timeout:
|
| 104 |
+
raise Exception(f"Backend request to {endpoint} timed out after {REQUEST_TIMEOUT}s")
|
| 105 |
+
except requests.exceptions.ConnectionError:
|
| 106 |
+
raise Exception(f"Failed to connect to backend - service may be unavailable")
|
| 107 |
except requests.exceptions.RequestException as e:
|
| 108 |
+
raise Exception(f"Backend request to {endpoint} failed: {str(e)}")
|
| 109 |
+
except ValueError as e:
|
| 110 |
+
raise Exception(f"Invalid JSON response from backend: {str(e)}")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def create_row_data(input_data: str) -> Dict[str, Any]:
|
| 114 |
+
"""
|
| 115 |
+
Create standardized row data structure for backend requests.
|
| 116 |
+
|
| 117 |
+
This function analyzes the input and places it in the appropriate field
|
| 118 |
+
based on URL patterns and content analysis.
|
| 119 |
+
|
| 120 |
+
Args:
|
| 121 |
+
input_data: The input string to analyze
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
Dictionary with appropriate field populated
|
| 125 |
+
"""
|
| 126 |
+
row_data = {
|
| 127 |
+
"Name": None,
|
| 128 |
+
"Authors": [],
|
| 129 |
+
"Paper": None,
|
| 130 |
+
"Code": None,
|
| 131 |
+
"Project": None,
|
| 132 |
+
"Space": None,
|
| 133 |
+
"Model": None,
|
| 134 |
+
"Dataset": None,
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
# Classify input based on URL patterns
|
| 138 |
+
if input_data.startswith(("http://", "https://")):
|
| 139 |
+
if "arxiv.org" in input_data or "huggingface.co/papers" in input_data:
|
| 140 |
+
row_data["Paper"] = input_data
|
| 141 |
+
elif "github.com" in input_data:
|
| 142 |
+
row_data["Code"] = input_data
|
| 143 |
+
elif "github.io" in input_data:
|
| 144 |
+
row_data["Project"] = input_data
|
| 145 |
+
elif "huggingface.co/spaces" in input_data:
|
| 146 |
+
row_data["Space"] = input_data
|
| 147 |
+
elif "huggingface.co/datasets" in input_data:
|
| 148 |
+
row_data["Dataset"] = input_data
|
| 149 |
+
elif "huggingface.co/" in input_data:
|
| 150 |
+
# Likely a model URL (huggingface.co/org/model-name)
|
| 151 |
+
row_data["Model"] = input_data
|
| 152 |
+
else:
|
| 153 |
+
# Unknown URL type - try as paper
|
| 154 |
+
row_data["Paper"] = input_data
|
| 155 |
+
else:
|
| 156 |
+
# Non-URL input - likely a paper title or project name
|
| 157 |
+
row_data["Name"] = input_data
|
| 158 |
+
|
| 159 |
+
return row_data
|
| 160 |
|
| 161 |
|
| 162 |
def infer_authors(input_data: str) -> List[str]:
|
|
|
|
| 165 |
|
| 166 |
This function attempts to extract author names from various inputs like
|
| 167 |
paper URLs (arXiv, Hugging Face papers), project pages, or repository links.
|
| 168 |
+
It uses the research-tracker-backend inference engine with sophisticated
|
| 169 |
+
author extraction from paper metadata and repository contributor information.
|
| 170 |
|
| 171 |
Args:
|
| 172 |
+
input_data: A URL, paper title, or other research-related input.
|
| 173 |
+
Supports arXiv URLs, GitHub repositories, HuggingFace resources,
|
| 174 |
+
project pages, and natural language paper titles.
|
| 175 |
|
| 176 |
Returns:
|
| 177 |
+
A list of author names as strings, or empty list if no authors found.
|
| 178 |
+
Authors are returned in the order they appear in the original source.
|
| 179 |
|
| 180 |
Examples:
|
| 181 |
+
>>> infer_authors("https://arxiv.org/abs/2010.11929")
|
| 182 |
["Alexey Dosovitskiy", "Lucas Beyer", "Alexander Kolesnikov", ...]
|
| 183 |
|
| 184 |
>>> infer_authors("https://github.com/google-research/vision_transformer")
|
| 185 |
["Alexey Dosovitskiy", "Lucas Beyer", ...]
|
| 186 |
+
|
| 187 |
+
>>> infer_authors("Vision Transformer")
|
| 188 |
+
["Alexey Dosovitskiy", "Lucas Beyer", ...]
|
| 189 |
+
|
| 190 |
+
Raises:
|
| 191 |
+
No exceptions are raised - errors are logged and empty list returned.
|
| 192 |
"""
|
|
|
|
|
|
|
|
|
|
| 193 |
try:
|
| 194 |
+
# Validate and clean input
|
| 195 |
+
cleaned_input = validate_input(input_data, "input_data")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
# Create structured data for backend
|
| 198 |
+
row_data = create_row_data(cleaned_input)
|
|
|
|
| 199 |
|
| 200 |
# Call the backend
|
| 201 |
result = make_backend_request("infer-authors", row_data)
|
| 202 |
|
| 203 |
+
# Extract and validate authors from response
|
| 204 |
authors = result.get("authors", [])
|
| 205 |
if isinstance(authors, str):
|
| 206 |
# Handle comma-separated string format
|
| 207 |
authors = [author.strip() for author in authors.split(",") if author.strip()]
|
| 208 |
elif not isinstance(authors, list):
|
| 209 |
+
logger.warning(f"Unexpected authors format: {type(authors)}")
|
| 210 |
authors = []
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
# Filter out empty or invalid author names
|
| 213 |
+
valid_authors = []
|
| 214 |
+
for author in authors:
|
| 215 |
+
if isinstance(author, str) and len(author.strip()) > 0:
|
| 216 |
+
cleaned_author = author.strip()
|
| 217 |
+
# Basic validation - authors should have reasonable length
|
| 218 |
+
if 2 <= len(cleaned_author) <= 100:
|
| 219 |
+
valid_authors.append(cleaned_author)
|
| 220 |
+
|
| 221 |
+
logger.info(f"Successfully inferred {len(valid_authors)} authors from input")
|
| 222 |
+
return valid_authors
|
| 223 |
+
|
| 224 |
+
except ValueError as e:
|
| 225 |
+
logger.error(f"Input validation error: {e}")
|
| 226 |
+
return []
|
| 227 |
except Exception as e:
|
| 228 |
logger.error(f"Error inferring authors: {e}")
|
| 229 |
return []
|
|
|
|
| 412 |
return "Unknown"
|
| 413 |
|
| 414 |
|
| 415 |
+
def infer_organizations(input_data: str) -> List[str]:
|
| 416 |
+
"""
|
| 417 |
+
Infer affiliated organizations from research paper or project information.
|
| 418 |
+
|
| 419 |
+
This function attempts to extract organization names from research metadata,
|
| 420 |
+
author affiliations, and repository information. It uses NLP analysis to
|
| 421 |
+
identify institutional affiliations from paper authors and project contributors.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
input_data: A URL, paper title, or other research-related input
|
| 425 |
+
|
| 426 |
+
Returns:
|
| 427 |
+
A list of organization names, or empty list if no organizations found
|
| 428 |
+
|
| 429 |
+
Examples:
|
| 430 |
+
>>> infer_organizations("https://arxiv.org/abs/2010.11929")
|
| 431 |
+
["Google Research", "University of Amsterdam", "ETH Zurich"]
|
| 432 |
+
|
| 433 |
+
>>> infer_organizations("https://github.com/openai/gpt-2")
|
| 434 |
+
["OpenAI"]
|
| 435 |
+
"""
|
| 436 |
+
if not input_data or not input_data.strip():
|
| 437 |
+
return []
|
| 438 |
+
|
| 439 |
+
try:
|
| 440 |
+
# Create row data structure
|
| 441 |
+
row_data = {
|
| 442 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
| 443 |
+
"Authors": [],
|
| 444 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
| 445 |
+
"Code": input_data if "github.com" in input_data else None,
|
| 446 |
+
"Project": input_data if "github.io" in input_data else None,
|
| 447 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
| 448 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
| 449 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
# Call the backend
|
| 453 |
+
result = make_backend_request("infer-orgs", row_data)
|
| 454 |
+
|
| 455 |
+
# Extract organizations from response
|
| 456 |
+
orgs = result.get("orgs", [])
|
| 457 |
+
if isinstance(orgs, str):
|
| 458 |
+
# Handle comma-separated string format
|
| 459 |
+
orgs = [org.strip() for org in orgs.split(",") if org.strip()]
|
| 460 |
+
elif not isinstance(orgs, list):
|
| 461 |
+
orgs = []
|
| 462 |
+
|
| 463 |
+
return orgs
|
| 464 |
+
|
| 465 |
+
except Exception as e:
|
| 466 |
+
logger.error(f"Error inferring organizations: {e}")
|
| 467 |
+
return []
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
def infer_publication_date(input_data: str) -> str:
|
| 471 |
+
"""
|
| 472 |
+
Infer publication date from research paper or project information.
|
| 473 |
+
|
| 474 |
+
This function attempts to extract publication dates from paper metadata,
|
| 475 |
+
repository creation dates, or release information. Returns dates in
|
| 476 |
+
standardized format (YYYY-MM-DD) when possible.
|
| 477 |
+
|
| 478 |
+
Args:
|
| 479 |
+
input_data: A URL, paper title, or other research-related input
|
| 480 |
+
|
| 481 |
+
Returns:
|
| 482 |
+
Publication date as string (YYYY-MM-DD format), or empty string if not found
|
| 483 |
+
|
| 484 |
+
Examples:
|
| 485 |
+
>>> infer_publication_date("https://arxiv.org/abs/2010.11929")
|
| 486 |
+
"2020-10-22"
|
| 487 |
+
|
| 488 |
+
>>> infer_publication_date("https://github.com/google-research/vision_transformer")
|
| 489 |
+
"2020-10-22"
|
| 490 |
+
"""
|
| 491 |
+
if not input_data or not input_data.strip():
|
| 492 |
+
return ""
|
| 493 |
+
|
| 494 |
+
try:
|
| 495 |
+
# Create row data structure
|
| 496 |
+
row_data = {
|
| 497 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
| 498 |
+
"Authors": [],
|
| 499 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
| 500 |
+
"Code": input_data if "github.com" in input_data else None,
|
| 501 |
+
"Project": input_data if "github.io" in input_data else None,
|
| 502 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
| 503 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
| 504 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
# Call the backend
|
| 508 |
+
result = make_backend_request("infer-date", row_data)
|
| 509 |
+
|
| 510 |
+
# Extract date from response
|
| 511 |
+
date = result.get("date", "")
|
| 512 |
+
return date if date else ""
|
| 513 |
+
|
| 514 |
+
except Exception as e:
|
| 515 |
+
logger.error(f"Error inferring publication date: {e}")
|
| 516 |
+
return ""
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def infer_model(input_data: str) -> str:
|
| 520 |
+
"""
|
| 521 |
+
Infer associated HuggingFace model from research paper or project information.
|
| 522 |
+
|
| 523 |
+
This function attempts to find HuggingFace models associated with research
|
| 524 |
+
papers, GitHub repositories, or project pages. It searches for model
|
| 525 |
+
references in papers, README files, and related documentation.
|
| 526 |
+
|
| 527 |
+
Args:
|
| 528 |
+
input_data: A URL, paper title, or other research-related input
|
| 529 |
+
|
| 530 |
+
Returns:
|
| 531 |
+
HuggingFace model URL, or empty string if no model found
|
| 532 |
+
|
| 533 |
+
Examples:
|
| 534 |
+
>>> infer_model("https://arxiv.org/abs/2010.11929")
|
| 535 |
+
"https://huggingface.co/google/vit-base-patch16-224"
|
| 536 |
+
|
| 537 |
+
>>> infer_model("Vision Transformer")
|
| 538 |
+
"https://huggingface.co/google/vit-base-patch16-224"
|
| 539 |
+
"""
|
| 540 |
+
if not input_data or not input_data.strip():
|
| 541 |
+
return ""
|
| 542 |
+
|
| 543 |
+
try:
|
| 544 |
+
# Create row data structure
|
| 545 |
+
row_data = {
|
| 546 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
| 547 |
+
"Authors": [],
|
| 548 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
| 549 |
+
"Code": input_data if "github.com" in input_data else None,
|
| 550 |
+
"Project": input_data if "github.io" in input_data else None,
|
| 551 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
| 552 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
| 553 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
| 554 |
+
}
|
| 555 |
+
|
| 556 |
+
# Call the backend
|
| 557 |
+
result = make_backend_request("infer-model", row_data)
|
| 558 |
+
|
| 559 |
+
# Extract model URL from response
|
| 560 |
+
model = result.get("model", "")
|
| 561 |
+
return model if model else ""
|
| 562 |
+
|
| 563 |
+
except Exception as e:
|
| 564 |
+
logger.error(f"Error inferring model: {e}")
|
| 565 |
+
return ""
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
def infer_dataset(input_data: str) -> str:
|
| 569 |
+
"""
|
| 570 |
+
Infer associated HuggingFace dataset from research paper or project information.
|
| 571 |
+
|
| 572 |
+
This function attempts to find HuggingFace datasets used or created by
|
| 573 |
+
research papers, GitHub repositories, or projects. It analyzes paper
|
| 574 |
+
content, repository documentation, and project descriptions.
|
| 575 |
+
|
| 576 |
+
Args:
|
| 577 |
+
input_data: A URL, paper title, or other research-related input
|
| 578 |
+
|
| 579 |
+
Returns:
|
| 580 |
+
HuggingFace dataset URL, or empty string if no dataset found
|
| 581 |
+
|
| 582 |
+
Examples:
|
| 583 |
+
>>> infer_dataset("https://arxiv.org/abs/1706.03762")
|
| 584 |
+
"https://huggingface.co/datasets/wmt14"
|
| 585 |
+
|
| 586 |
+
>>> infer_dataset("https://github.com/huggingface/transformers")
|
| 587 |
+
"https://huggingface.co/datasets/glue"
|
| 588 |
+
"""
|
| 589 |
+
if not input_data or not input_data.strip():
|
| 590 |
+
return ""
|
| 591 |
+
|
| 592 |
+
try:
|
| 593 |
+
# Create row data structure
|
| 594 |
+
row_data = {
|
| 595 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
| 596 |
+
"Authors": [],
|
| 597 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
| 598 |
+
"Code": input_data if "github.com" in input_data else None,
|
| 599 |
+
"Project": input_data if "github.io" in input_data else None,
|
| 600 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
| 601 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
| 602 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
| 603 |
+
}
|
| 604 |
+
|
| 605 |
+
# Call the backend
|
| 606 |
+
result = make_backend_request("infer-dataset", row_data)
|
| 607 |
+
|
| 608 |
+
# Extract dataset URL from response
|
| 609 |
+
dataset = result.get("dataset", "")
|
| 610 |
+
return dataset if dataset else ""
|
| 611 |
+
|
| 612 |
+
except Exception as e:
|
| 613 |
+
logger.error(f"Error inferring dataset: {e}")
|
| 614 |
+
return ""
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
def infer_space(input_data: str) -> str:
|
| 618 |
+
"""
|
| 619 |
+
Infer associated HuggingFace space from research paper or project information.
|
| 620 |
+
|
| 621 |
+
This function attempts to find HuggingFace spaces (demos/applications)
|
| 622 |
+
associated with research papers, models, or GitHub repositories. It looks
|
| 623 |
+
for interactive demos and applications built around research.
|
| 624 |
+
|
| 625 |
+
Args:
|
| 626 |
+
input_data: A URL, paper title, or other research-related input
|
| 627 |
+
|
| 628 |
+
Returns:
|
| 629 |
+
HuggingFace space URL, or empty string if no space found
|
| 630 |
+
|
| 631 |
+
Examples:
|
| 632 |
+
>>> infer_space("https://huggingface.co/google/vit-base-patch16-224")
|
| 633 |
+
"https://huggingface.co/spaces/google/vit-demo"
|
| 634 |
+
|
| 635 |
+
>>> infer_space("https://arxiv.org/abs/2010.11929")
|
| 636 |
+
"https://huggingface.co/spaces/google/vision-transformer-demo"
|
| 637 |
+
"""
|
| 638 |
+
if not input_data or not input_data.strip():
|
| 639 |
+
return ""
|
| 640 |
+
|
| 641 |
+
try:
|
| 642 |
+
# Create row data structure
|
| 643 |
+
row_data = {
|
| 644 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
| 645 |
+
"Authors": [],
|
| 646 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
| 647 |
+
"Code": input_data if "github.com" in input_data else None,
|
| 648 |
+
"Project": input_data if "github.io" in input_data else None,
|
| 649 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
| 650 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
| 651 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
| 652 |
+
}
|
| 653 |
+
|
| 654 |
+
# Call the backend
|
| 655 |
+
result = make_backend_request("infer-space", row_data)
|
| 656 |
+
|
| 657 |
+
# Extract space URL from response
|
| 658 |
+
space = result.get("space", "")
|
| 659 |
+
return space if space else ""
|
| 660 |
+
|
| 661 |
+
except Exception as e:
|
| 662 |
+
logger.error(f"Error inferring space: {e}")
|
| 663 |
+
return ""
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
def infer_license(input_data: str) -> str:
|
| 667 |
+
"""
|
| 668 |
+
Infer license information from research repository or project.
|
| 669 |
+
|
| 670 |
+
This function attempts to extract license information from GitHub
|
| 671 |
+
repositories, project documentation, or associated code. It checks
|
| 672 |
+
license files, repository metadata, and project descriptions.
|
| 673 |
+
|
| 674 |
+
Args:
|
| 675 |
+
input_data: A URL, repository link, or other research-related input
|
| 676 |
+
|
| 677 |
+
Returns:
|
| 678 |
+
License name/type, or empty string if no license found
|
| 679 |
+
|
| 680 |
+
Examples:
|
| 681 |
+
>>> infer_license("https://github.com/google-research/vision_transformer")
|
| 682 |
+
"Apache License 2.0"
|
| 683 |
+
|
| 684 |
+
>>> infer_license("https://github.com/openai/gpt-2")
|
| 685 |
+
"MIT License"
|
| 686 |
+
"""
|
| 687 |
+
if not input_data or not input_data.strip():
|
| 688 |
+
return ""
|
| 689 |
+
|
| 690 |
+
try:
|
| 691 |
+
# Create row data structure
|
| 692 |
+
row_data = {
|
| 693 |
+
"Name": input_data if not input_data.startswith("http") else None,
|
| 694 |
+
"Authors": [],
|
| 695 |
+
"Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
|
| 696 |
+
"Code": input_data if "github.com" in input_data else None,
|
| 697 |
+
"Project": input_data if "github.io" in input_data else None,
|
| 698 |
+
"Space": input_data if "huggingface.co/spaces" in input_data else None,
|
| 699 |
+
"Model": input_data if "huggingface.co/models" in input_data else None,
|
| 700 |
+
"Dataset": input_data if "huggingface.co/datasets" in input_data else None,
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
# Call the backend
|
| 704 |
+
result = make_backend_request("infer-license", row_data)
|
| 705 |
+
|
| 706 |
+
# Extract license from response
|
| 707 |
+
license_info = result.get("license", "")
|
| 708 |
+
return license_info if license_info else ""
|
| 709 |
+
|
| 710 |
+
except Exception as e:
|
| 711 |
+
logger.error(f"Error inferring license: {e}")
|
| 712 |
+
return ""
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
def batch_infer_research(input_list: List[str], inference_type: str = "authors") -> List[Dict[str, Any]]:
|
| 716 |
+
"""
|
| 717 |
+
Perform batch inference on multiple research items for scale analysis.
|
| 718 |
+
|
| 719 |
+
This function processes multiple research URLs or titles simultaneously,
|
| 720 |
+
applying the specified inference type to each item. Useful for analyzing
|
| 721 |
+
large research datasets, comparing multiple papers, or building research
|
| 722 |
+
knowledge graphs.
|
| 723 |
+
|
| 724 |
+
Args:
|
| 725 |
+
input_list: List of URLs, paper titles, or research-related inputs to process
|
| 726 |
+
inference_type: Type of inference to perform on each item.
|
| 727 |
+
Options: "authors", "paper", "code", "name", "organizations",
|
| 728 |
+
"date", "model", "dataset", "space", "license", "classify"
|
| 729 |
+
|
| 730 |
+
Returns:
|
| 731 |
+
List of dictionaries, each containing:
|
| 732 |
+
- "input": The original input string
|
| 733 |
+
- "result": The inference result (format depends on inference_type)
|
| 734 |
+
- "success": Boolean indicating if inference succeeded
|
| 735 |
+
- "error": Error message if inference failed
|
| 736 |
+
|
| 737 |
+
Examples:
|
| 738 |
+
>>> papers = [
|
| 739 |
+
... "https://arxiv.org/abs/2010.11929",
|
| 740 |
+
... "https://arxiv.org/abs/1706.03762",
|
| 741 |
+
... "https://github.com/openai/gpt-2"
|
| 742 |
+
... ]
|
| 743 |
+
>>> results = batch_infer_research(papers, "authors")
|
| 744 |
+
>>> for result in results:
|
| 745 |
+
... print(f"{result['input']}: {len(result['result'])} authors")
|
| 746 |
+
|
| 747 |
+
>>> urls = ["https://huggingface.co/bert-base-uncased", "https://github.com/pytorch/pytorch"]
|
| 748 |
+
>>> classifications = batch_infer_research(urls, "classify")
|
| 749 |
+
|
| 750 |
+
Notes:
|
| 751 |
+
- Processing is done sequentially to avoid overwhelming the backend
|
| 752 |
+
- Failed inferences return empty results rather than raising exceptions
|
| 753 |
+
- Large batches may take significant time - consider chunking for very large datasets
|
| 754 |
+
"""
|
| 755 |
+
if not input_list:
|
| 756 |
+
return []
|
| 757 |
+
|
| 758 |
+
# Map inference types to their corresponding functions
|
| 759 |
+
inference_functions = {
|
| 760 |
+
"authors": infer_authors,
|
| 761 |
+
"paper": infer_paper_url,
|
| 762 |
+
"code": infer_code_repository,
|
| 763 |
+
"name": infer_research_name,
|
| 764 |
+
"organizations": infer_organizations,
|
| 765 |
+
"date": infer_publication_date,
|
| 766 |
+
"model": infer_model,
|
| 767 |
+
"dataset": infer_dataset,
|
| 768 |
+
"space": infer_space,
|
| 769 |
+
"license": infer_license,
|
| 770 |
+
"classify": classify_research_url,
|
| 771 |
+
}
|
| 772 |
+
|
| 773 |
+
if inference_type not in inference_functions:
|
| 774 |
+
logger.error(f"Invalid inference type: {inference_type}")
|
| 775 |
+
return []
|
| 776 |
+
|
| 777 |
+
inference_func = inference_functions[inference_type]
|
| 778 |
+
results = []
|
| 779 |
+
|
| 780 |
+
logger.info(f"Starting batch inference of type '{inference_type}' on {len(input_list)} items")
|
| 781 |
+
|
| 782 |
+
for i, input_item in enumerate(input_list):
|
| 783 |
+
try:
|
| 784 |
+
if not input_item or not isinstance(input_item, str):
|
| 785 |
+
results.append({
|
| 786 |
+
"input": str(input_item),
|
| 787 |
+
"result": None,
|
| 788 |
+
"success": False,
|
| 789 |
+
"error": "Invalid input: must be non-empty string"
|
| 790 |
+
})
|
| 791 |
+
continue
|
| 792 |
+
|
| 793 |
+
# Perform inference
|
| 794 |
+
result = inference_func(input_item)
|
| 795 |
+
|
| 796 |
+
results.append({
|
| 797 |
+
"input": input_item,
|
| 798 |
+
"result": result,
|
| 799 |
+
"success": True,
|
| 800 |
+
"error": None
|
| 801 |
+
})
|
| 802 |
+
|
| 803 |
+
logger.debug(f"Batch item {i+1}/{len(input_list)} completed successfully")
|
| 804 |
+
|
| 805 |
+
except Exception as e:
|
| 806 |
+
logger.error(f"Batch inference failed for item {i+1}: {e}")
|
| 807 |
+
results.append({
|
| 808 |
+
"input": input_item,
|
| 809 |
+
"result": None,
|
| 810 |
+
"success": False,
|
| 811 |
+
"error": str(e)
|
| 812 |
+
})
|
| 813 |
+
|
| 814 |
+
successful_count = sum(1 for r in results if r["success"])
|
| 815 |
+
logger.info(f"Batch inference completed: {successful_count}/{len(input_list)} successful")
|
| 816 |
+
|
| 817 |
+
return results
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
def find_research_relationships(input_data: str) -> Dict[str, Any]:
|
| 821 |
+
"""
|
| 822 |
+
Find ALL related research resources across platforms for comprehensive analysis.
|
| 823 |
+
|
| 824 |
+
This function performs a comprehensive analysis of a research item to find
|
| 825 |
+
all related resources including papers, code repositories, models, datasets,
|
| 826 |
+
spaces, and metadata. It's designed for building research knowledge graphs
|
| 827 |
+
and understanding the complete ecosystem around a research topic.
|
| 828 |
+
|
| 829 |
+
Args:
|
| 830 |
+
input_data: A URL, paper title, or other research-related input
|
| 831 |
+
|
| 832 |
+
Returns:
|
| 833 |
+
Dictionary containing all discovered related resources:
|
| 834 |
+
{
|
| 835 |
+
"paper": str | None, # Associated research paper
|
| 836 |
+
"code": str | None, # Code repository URL
|
| 837 |
+
"name": str | None, # Research/project name
|
| 838 |
+
"authors": List[str], # Author names
|
| 839 |
+
"organizations": List[str], # Affiliated organizations
|
| 840 |
+
"date": str | None, # Publication date
|
| 841 |
+
"model": str | None, # HuggingFace model URL
|
| 842 |
+
"dataset": str | None, # HuggingFace dataset URL
|
| 843 |
+
"space": str | None, # HuggingFace space URL
|
| 844 |
+
"license": str | None, # License information
|
| 845 |
+
"field_type": str | None, # Classification of input type
|
| 846 |
+
"success_count": int, # Number of successful inferences
|
| 847 |
+
"total_inferences": int # Total inferences attempted
|
| 848 |
+
}
|
| 849 |
+
|
| 850 |
+
Examples:
|
| 851 |
+
>>> relationships = find_research_relationships("https://arxiv.org/abs/2010.11929")
|
| 852 |
+
>>> print(f"Found {relationships['success_count']} related resources")
|
| 853 |
+
>>> print(f"Authors: {relationships['authors']}")
|
| 854 |
+
>>> print(f"Code: {relationships['code']}")
|
| 855 |
+
>>> print(f"Model: {relationships['model']}")
|
| 856 |
+
|
| 857 |
+
>>> ecosystem = find_research_relationships("Vision Transformer")
|
| 858 |
+
>>> if ecosystem['paper']:
|
| 859 |
+
... print(f"Paper: {ecosystem['paper']}")
|
| 860 |
+
>>> if ecosystem['code']:
|
| 861 |
+
... print(f"Implementation: {ecosystem['code']}")
|
| 862 |
+
"""
|
| 863 |
+
try:
|
| 864 |
+
# Validate input
|
| 865 |
+
cleaned_input = validate_input(input_data, "input_data")
|
| 866 |
+
|
| 867 |
+
# Initialize result structure
|
| 868 |
+
relationships = {
|
| 869 |
+
"paper": None,
|
| 870 |
+
"code": None,
|
| 871 |
+
"name": None,
|
| 872 |
+
"authors": [],
|
| 873 |
+
"organizations": [],
|
| 874 |
+
"date": None,
|
| 875 |
+
"model": None,
|
| 876 |
+
"dataset": None,
|
| 877 |
+
"space": None,
|
| 878 |
+
"license": None,
|
| 879 |
+
"field_type": None,
|
| 880 |
+
"success_count": 0,
|
| 881 |
+
"total_inferences": 11 # Number of inference types we'll attempt
|
| 882 |
+
}
|
| 883 |
+
|
| 884 |
+
# Define inference operations
|
| 885 |
+
inferences = [
|
| 886 |
+
("paper", infer_paper_url),
|
| 887 |
+
("code", infer_code_repository),
|
| 888 |
+
("name", infer_research_name),
|
| 889 |
+
("authors", infer_authors),
|
| 890 |
+
("organizations", infer_organizations),
|
| 891 |
+
("date", infer_publication_date),
|
| 892 |
+
("model", infer_model),
|
| 893 |
+
("dataset", infer_dataset),
|
| 894 |
+
("space", infer_space),
|
| 895 |
+
("license", infer_license),
|
| 896 |
+
("field_type", classify_research_url)
|
| 897 |
+
]
|
| 898 |
+
|
| 899 |
+
logger.info(f"Finding research relationships for: {cleaned_input}")
|
| 900 |
+
|
| 901 |
+
# Perform all inferences
|
| 902 |
+
for field_name, inference_func in inferences:
|
| 903 |
+
try:
|
| 904 |
+
result = inference_func(cleaned_input)
|
| 905 |
+
|
| 906 |
+
# Handle different return types
|
| 907 |
+
if isinstance(result, list) and result:
|
| 908 |
+
relationships[field_name] = result
|
| 909 |
+
relationships["success_count"] += 1
|
| 910 |
+
elif isinstance(result, str) and result.strip():
|
| 911 |
+
relationships[field_name] = result.strip()
|
| 912 |
+
relationships["success_count"] += 1
|
| 913 |
+
# else: leave as None (unsuccessful inference)
|
| 914 |
+
|
| 915 |
+
except Exception as e:
|
| 916 |
+
logger.warning(f"Failed to infer {field_name}: {e}")
|
| 917 |
+
# Continue with other inferences
|
| 918 |
+
|
| 919 |
+
logger.info(f"Research relationship analysis completed: {relationships['success_count']}/{relationships['total_inferences']} successful")
|
| 920 |
+
return relationships
|
| 921 |
+
|
| 922 |
+
except ValueError as e:
|
| 923 |
+
logger.error(f"Input validation error: {e}")
|
| 924 |
+
return {"error": str(e), "success_count": 0, "total_inferences": 0}
|
| 925 |
+
except Exception as e:
|
| 926 |
+
logger.error(f"Error finding research relationships: {e}")
|
| 927 |
+
return {"error": str(e), "success_count": 0, "total_inferences": 0}
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
def validate_research_urls(urls: List[str]) -> List[Dict[str, Any]]:
|
| 931 |
+
"""
|
| 932 |
+
Validate accessibility and format of research URLs at scale.
|
| 933 |
+
|
| 934 |
+
This function checks multiple research URLs for accessibility, format
|
| 935 |
+
validity, and basic content analysis. Useful for data cleaning,
|
| 936 |
+
link validation, and quality assurance of research datasets.
|
| 937 |
+
|
| 938 |
+
Args:
|
| 939 |
+
urls: List of URLs to validate
|
| 940 |
+
|
| 941 |
+
Returns:
|
| 942 |
+
List of validation results, each containing:
|
| 943 |
+
- "url": The original URL
|
| 944 |
+
- "accessible": Boolean indicating if URL is reachable
|
| 945 |
+
- "status_code": HTTP status code (if applicable)
|
| 946 |
+
- "format_valid": Boolean indicating if URL format is valid
|
| 947 |
+
- "platform": Detected platform (arxiv, github, huggingface, etc.)
|
| 948 |
+
- "error": Error message if validation failed
|
| 949 |
+
|
| 950 |
+
Examples:
|
| 951 |
+
>>> urls = [
|
| 952 |
+
... "https://arxiv.org/abs/2010.11929",
|
| 953 |
+
... "https://github.com/google-research/vision_transformer",
|
| 954 |
+
... "https://invalid-url-example"
|
| 955 |
+
... ]
|
| 956 |
+
>>> validation_results = validate_research_urls(urls)
|
| 957 |
+
>>> accessible_urls = [r for r in validation_results if r["accessible"]]
|
| 958 |
+
>>> print(f"{len(accessible_urls)}/{len(urls)} URLs are accessible")
|
| 959 |
+
"""
|
| 960 |
+
if not urls:
|
| 961 |
+
return []
|
| 962 |
+
|
| 963 |
+
results = []
|
| 964 |
+
logger.info(f"Validating {len(urls)} research URLs")
|
| 965 |
+
|
| 966 |
+
for url in urls:
|
| 967 |
+
result = {
|
| 968 |
+
"url": url,
|
| 969 |
+
"accessible": False,
|
| 970 |
+
"status_code": None,
|
| 971 |
+
"format_valid": False,
|
| 972 |
+
"platform": "unknown",
|
| 973 |
+
"error": None
|
| 974 |
+
}
|
| 975 |
+
|
| 976 |
+
try:
|
| 977 |
+
# Basic format validation
|
| 978 |
+
if not isinstance(url, str) or not url.strip():
|
| 979 |
+
result["error"] = "Invalid URL format: empty or non-string"
|
| 980 |
+
results.append(result)
|
| 981 |
+
continue
|
| 982 |
+
|
| 983 |
+
cleaned_url = url.strip()
|
| 984 |
+
|
| 985 |
+
# URL format validation
|
| 986 |
+
if not cleaned_url.startswith(("http://", "https://")):
|
| 987 |
+
result["error"] = "Invalid URL format: must start with http:// or https://"
|
| 988 |
+
results.append(result)
|
| 989 |
+
continue
|
| 990 |
+
|
| 991 |
+
result["format_valid"] = True
|
| 992 |
+
|
| 993 |
+
# Platform detection
|
| 994 |
+
if "arxiv.org" in cleaned_url:
|
| 995 |
+
result["platform"] = "arxiv"
|
| 996 |
+
elif "github.com" in cleaned_url:
|
| 997 |
+
result["platform"] = "github"
|
| 998 |
+
elif "huggingface.co" in cleaned_url:
|
| 999 |
+
result["platform"] = "huggingface"
|
| 1000 |
+
elif "github.io" in cleaned_url:
|
| 1001 |
+
result["platform"] = "github_pages"
|
| 1002 |
+
|
| 1003 |
+
# Accessibility check
|
| 1004 |
+
try:
|
| 1005 |
+
response = requests.head(cleaned_url, timeout=10, allow_redirects=True)
|
| 1006 |
+
result["status_code"] = response.status_code
|
| 1007 |
+
result["accessible"] = 200 <= response.status_code < 400
|
| 1008 |
+
|
| 1009 |
+
except requests.exceptions.Timeout:
|
| 1010 |
+
result["error"] = "Timeout: URL not accessible within 10 seconds"
|
| 1011 |
+
except requests.exceptions.ConnectionError:
|
| 1012 |
+
result["error"] = "Connection error: Unable to reach URL"
|
| 1013 |
+
except requests.exceptions.RequestException as e:
|
| 1014 |
+
result["error"] = f"Request failed: {str(e)}"
|
| 1015 |
+
|
| 1016 |
+
except Exception as e:
|
| 1017 |
+
result["error"] = f"Validation error: {str(e)}"
|
| 1018 |
+
|
| 1019 |
+
results.append(result)
|
| 1020 |
+
|
| 1021 |
+
accessible_count = sum(1 for r in results if r["accessible"])
|
| 1022 |
+
logger.info(f"URL validation completed: {accessible_count}/{len(urls)} accessible")
|
| 1023 |
+
|
| 1024 |
+
return results
|
| 1025 |
+
|
| 1026 |
+
|
| 1027 |
# Create Gradio interface
|
| 1028 |
def create_demo():
|
| 1029 |
"""Create the Gradio demo interface for testing."""
|
| 1030 |
|
| 1031 |
with gr.Blocks(title="Research Tracker MCP Server") as demo:
|
| 1032 |
gr.Markdown("# Research Tracker MCP Server")
|
| 1033 |
+
gr.Markdown("Test the comprehensive research inference utilities available through MCP. This server provides cross-platform research analysis, batch processing, and relationship discovery.")
|
| 1034 |
+
|
| 1035 |
+
# Core inference functions
|
| 1036 |
+
with gr.TabItem("Core Inference"):
|
| 1037 |
+
with gr.Tab("Authors"):
|
| 1038 |
+
with gr.Row():
|
| 1039 |
+
author_input = gr.Textbox(
|
| 1040 |
+
label="Input (URL, paper title, etc.)",
|
| 1041 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
| 1042 |
+
lines=1
|
| 1043 |
+
)
|
| 1044 |
+
author_output = gr.JSON(label="Authors")
|
| 1045 |
+
author_btn = gr.Button("Infer Authors")
|
| 1046 |
+
author_btn.click(infer_authors, inputs=author_input, outputs=author_output)
|
| 1047 |
+
|
| 1048 |
+
with gr.Tab("Paper"):
|
| 1049 |
+
with gr.Row():
|
| 1050 |
+
paper_input = gr.Textbox(
|
| 1051 |
+
label="Input (GitHub repo, project name, etc.)",
|
| 1052 |
+
placeholder="https://github.com/google-research/vision_transformer",
|
| 1053 |
+
lines=1
|
| 1054 |
+
)
|
| 1055 |
+
paper_output = gr.Textbox(label="Paper URL")
|
| 1056 |
+
paper_btn = gr.Button("Infer Paper")
|
| 1057 |
+
paper_btn.click(infer_paper_url, inputs=paper_input, outputs=paper_output)
|
| 1058 |
+
|
| 1059 |
+
with gr.Tab("Code"):
|
| 1060 |
+
with gr.Row():
|
| 1061 |
+
code_input = gr.Textbox(
|
| 1062 |
+
label="Input (paper URL, project name, etc.)",
|
| 1063 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
| 1064 |
+
lines=1
|
| 1065 |
+
)
|
| 1066 |
+
code_output = gr.Textbox(label="Code Repository URL")
|
| 1067 |
+
code_btn = gr.Button("Infer Code")
|
| 1068 |
+
code_btn.click(infer_code_repository, inputs=code_input, outputs=code_output)
|
| 1069 |
+
|
| 1070 |
+
with gr.Tab("Name"):
|
| 1071 |
+
with gr.Row():
|
| 1072 |
+
name_input = gr.Textbox(
|
| 1073 |
+
label="Input (URL, repo, etc.)",
|
| 1074 |
+
placeholder="https://github.com/google-research/vision_transformer",
|
| 1075 |
+
lines=1
|
| 1076 |
+
)
|
| 1077 |
+
name_output = gr.Textbox(label="Research Name/Title")
|
| 1078 |
+
name_btn = gr.Button("Infer Name")
|
| 1079 |
+
name_btn.click(infer_research_name, inputs=name_input, outputs=name_output)
|
| 1080 |
+
|
| 1081 |
+
with gr.Tab("Classify"):
|
| 1082 |
+
with gr.Row():
|
| 1083 |
+
classify_input = gr.Textbox(
|
| 1084 |
+
label="URL to classify",
|
| 1085 |
+
placeholder="https://huggingface.co/google/vit-base-patch16-224",
|
| 1086 |
+
lines=1
|
| 1087 |
+
)
|
| 1088 |
+
classify_output = gr.Textbox(label="URL Type")
|
| 1089 |
+
classify_btn = gr.Button("Classify URL")
|
| 1090 |
+
classify_btn.click(classify_research_url, inputs=classify_input, outputs=classify_output)
|
| 1091 |
+
|
| 1092 |
+
# Extended inference functions
|
| 1093 |
+
with gr.TabItem("Extended Inference"):
|
| 1094 |
+
with gr.Tab("Organizations"):
|
| 1095 |
+
with gr.Row():
|
| 1096 |
+
orgs_input = gr.Textbox(
|
| 1097 |
+
label="Input (paper URL, repo, etc.)",
|
| 1098 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
| 1099 |
+
lines=1
|
| 1100 |
+
)
|
| 1101 |
+
orgs_output = gr.JSON(label="Organizations")
|
| 1102 |
+
orgs_btn = gr.Button("Infer Organizations")
|
| 1103 |
+
orgs_btn.click(infer_organizations, inputs=orgs_input, outputs=orgs_output)
|
| 1104 |
+
|
| 1105 |
+
with gr.Tab("Publication Date"):
|
| 1106 |
+
with gr.Row():
|
| 1107 |
+
date_input = gr.Textbox(
|
| 1108 |
+
label="Input (paper URL, repo, etc.)",
|
| 1109 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
| 1110 |
+
lines=1
|
| 1111 |
+
)
|
| 1112 |
+
date_output = gr.Textbox(label="Publication Date")
|
| 1113 |
+
date_btn = gr.Button("Infer Date")
|
| 1114 |
+
date_btn.click(infer_publication_date, inputs=date_input, outputs=date_output)
|
| 1115 |
+
|
| 1116 |
+
with gr.Tab("Model"):
|
| 1117 |
+
with gr.Row():
|
| 1118 |
+
model_input = gr.Textbox(
|
| 1119 |
+
label="Input (paper URL, project name, etc.)",
|
| 1120 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
| 1121 |
+
lines=1
|
| 1122 |
+
)
|
| 1123 |
+
model_output = gr.Textbox(label="HuggingFace Model URL")
|
| 1124 |
+
model_btn = gr.Button("Infer Model")
|
| 1125 |
+
model_btn.click(infer_model, inputs=model_input, outputs=model_output)
|
| 1126 |
+
|
| 1127 |
+
with gr.Tab("Dataset"):
|
| 1128 |
+
with gr.Row():
|
| 1129 |
+
dataset_input = gr.Textbox(
|
| 1130 |
+
label="Input (paper URL, project name, etc.)",
|
| 1131 |
+
placeholder="https://arxiv.org/abs/1706.03762",
|
| 1132 |
+
lines=1
|
| 1133 |
+
)
|
| 1134 |
+
dataset_output = gr.Textbox(label="HuggingFace Dataset URL")
|
| 1135 |
+
dataset_btn = gr.Button("Infer Dataset")
|
| 1136 |
+
dataset_btn.click(infer_dataset, inputs=dataset_input, outputs=dataset_output)
|
| 1137 |
+
|
| 1138 |
+
with gr.Tab("Space"):
|
| 1139 |
+
with gr.Row():
|
| 1140 |
+
space_input = gr.Textbox(
|
| 1141 |
+
label="Input (model URL, paper, etc.)",
|
| 1142 |
+
placeholder="https://huggingface.co/google/vit-base-patch16-224",
|
| 1143 |
+
lines=1
|
| 1144 |
+
)
|
| 1145 |
+
space_output = gr.Textbox(label="HuggingFace Space URL")
|
| 1146 |
+
space_btn = gr.Button("Infer Space")
|
| 1147 |
+
space_btn.click(infer_space, inputs=space_input, outputs=space_output)
|
| 1148 |
+
|
| 1149 |
+
with gr.Tab("License"):
|
| 1150 |
+
with gr.Row():
|
| 1151 |
+
license_input = gr.Textbox(
|
| 1152 |
+
label="Input (repository URL, project, etc.)",
|
| 1153 |
+
placeholder="https://github.com/google-research/vision_transformer",
|
| 1154 |
+
lines=1
|
| 1155 |
+
)
|
| 1156 |
+
license_output = gr.Textbox(label="License Information")
|
| 1157 |
+
license_btn = gr.Button("Infer License")
|
| 1158 |
+
license_btn.click(infer_license, inputs=license_input, outputs=license_output)
|
| 1159 |
+
|
| 1160 |
+
# Research intelligence functions
|
| 1161 |
+
with gr.TabItem("Research Intelligence"):
|
| 1162 |
+
with gr.Tab("Research Relationships"):
|
| 1163 |
+
gr.Markdown("Find ALL related resources for comprehensive research analysis")
|
| 1164 |
+
with gr.Row():
|
| 1165 |
+
relationships_input = gr.Textbox(
|
| 1166 |
+
label="Input (URL, paper title, etc.)",
|
| 1167 |
+
placeholder="https://arxiv.org/abs/2010.11929",
|
| 1168 |
+
lines=1
|
| 1169 |
+
)
|
| 1170 |
+
relationships_output = gr.JSON(label="Related Resources")
|
| 1171 |
+
relationships_btn = gr.Button("Find Research Relationships")
|
| 1172 |
+
relationships_btn.click(find_research_relationships, inputs=relationships_input, outputs=relationships_output)
|
| 1173 |
+
|
| 1174 |
+
with gr.Tab("Batch Processing"):
|
| 1175 |
+
gr.Markdown("Process multiple research items simultaneously")
|
| 1176 |
+
with gr.Row():
|
| 1177 |
+
with gr.Column():
|
| 1178 |
+
batch_input = gr.Textbox(
|
| 1179 |
+
label="Input URLs/Titles (one per line)",
|
| 1180 |
+
placeholder="https://arxiv.org/abs/2010.11929\nhttps://github.com/openai/gpt-2\nVision Transformer",
|
| 1181 |
+
lines=5
|
| 1182 |
+
)
|
| 1183 |
+
batch_type = gr.Dropdown(
|
| 1184 |
+
choices=["authors", "paper", "code", "name", "organizations", "date", "model", "dataset", "space", "license", "classify"],
|
| 1185 |
+
value="authors",
|
| 1186 |
+
label="Inference Type"
|
| 1187 |
+
)
|
| 1188 |
+
batch_output = gr.JSON(label="Batch Results")
|
| 1189 |
+
|
| 1190 |
+
def process_batch(input_text, inference_type):
|
| 1191 |
+
if not input_text.strip():
|
| 1192 |
+
return []
|
| 1193 |
+
input_list = [line.strip() for line in input_text.strip().split('\n') if line.strip()]
|
| 1194 |
+
return batch_infer_research(input_list, inference_type)
|
| 1195 |
+
|
| 1196 |
+
batch_btn = gr.Button("Process Batch")
|
| 1197 |
+
batch_btn.click(process_batch, inputs=[batch_input, batch_type], outputs=batch_output)
|
| 1198 |
+
|
| 1199 |
+
with gr.Tab("URL Validation"):
|
| 1200 |
+
gr.Markdown("Validate accessibility and format of research URLs")
|
| 1201 |
+
with gr.Row():
|
| 1202 |
+
with gr.Column():
|
| 1203 |
+
url_input = gr.Textbox(
|
| 1204 |
+
label="URLs to validate (one per line)",
|
| 1205 |
+
placeholder="https://arxiv.org/abs/2010.11929\nhttps://github.com/google-research/vision_transformer\nhttps://huggingface.co/google/vit-base-patch16-224",
|
| 1206 |
+
lines=5
|
| 1207 |
+
)
|
| 1208 |
+
url_output = gr.JSON(label="Validation Results")
|
| 1209 |
+
|
| 1210 |
+
def validate_urls(input_text):
|
| 1211 |
+
if not input_text.strip():
|
| 1212 |
+
return []
|
| 1213 |
+
url_list = [line.strip() for line in input_text.strip().split('\n') if line.strip()]
|
| 1214 |
+
return validate_research_urls(url_list)
|
| 1215 |
+
|
| 1216 |
+
url_btn = gr.Button("Validate URLs")
|
| 1217 |
+
url_btn.click(validate_urls, inputs=url_input, outputs=url_output)
|
| 1218 |
|
| 1219 |
return demo
|
| 1220 |
|