File size: 13,520 Bytes
642907a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"""
Research Tracker MCP Server

A Gradio-based MCP server that provides research inference utilities.
Delegates inference logic to the research-tracker-backend for consistency.
"""

import os
import requests
import gradio as gr
from typing import List, Dict, Any, Optional
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration
BACKEND_URL = "https://dylanebert-research-tracker-backend.hf.space"
HF_TOKEN = os.environ.get("HF_TOKEN")
REQUEST_TIMEOUT = 30

if not HF_TOKEN:
    logger.warning("HF_TOKEN not found in environment variables")


def make_backend_request(endpoint: str, data: Dict[str, Any]) -> Dict[str, Any]:
    """
    Make a request to the research-tracker-backend.
    
    Args:
        endpoint: The backend endpoint to call (e.g., 'infer-authors')
        data: The data to send in the request body
    
    Returns:
        The response data from the backend
        
    Raises:
        Exception: If the request fails or returns an error
    """
    url = f"{BACKEND_URL}/{endpoint}"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {HF_TOKEN}" if HF_TOKEN else ""
    }
    
    try:
        response = requests.post(url, json=data, headers=headers, timeout=REQUEST_TIMEOUT)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.Timeout:
        raise Exception(f"Request to {endpoint} timed out")
    except requests.exceptions.RequestException as e:
        raise Exception(f"Request to {endpoint} failed: {str(e)}")


def infer_authors(input_data: str) -> List[str]:
    """
    Infer authors from research paper or project information.
    
    This function attempts to extract author names from various inputs like
    paper URLs (arXiv, Hugging Face papers), project pages, or repository links.
    It uses the research-tracker-backend inference engine.
    
    Args:
        input_data: A URL, paper title, or other research-related input
        
    Returns:
        A list of author names, or empty list if no authors found
        
    Examples:
        >>> infer_authors("https://arxiv.org/abs/2103.00020")
        ["Alexey Dosovitskiy", "Lucas Beyer", "Alexander Kolesnikov", ...]
        
        >>> infer_authors("https://github.com/google-research/vision_transformer")
        ["Alexey Dosovitskiy", "Lucas Beyer", ...]
    """
    if not input_data or not input_data.strip():
        return []
    
    try:
        # Create a minimal row data structure for the backend
        row_data = {
            "Name": None,
            "Authors": [],
            "Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
            "Code": input_data if "github.com" in input_data else None,
            "Project": input_data if "github.io" in input_data else None,
            "Space": input_data if "huggingface.co/spaces" in input_data else None,
            "Model": input_data if "huggingface.co/models" in input_data else None,
            "Dataset": input_data if "huggingface.co/datasets" in input_data else None,
        }
        
        # If we can't classify the input, try it as a paper
        if not any(row_data.values()):
            row_data["Paper"] = input_data
        
        # Call the backend
        result = make_backend_request("infer-authors", row_data)
        
        # Extract authors from response
        authors = result.get("authors", [])
        if isinstance(authors, str):
            # Handle comma-separated string format
            authors = [author.strip() for author in authors.split(",") if author.strip()]
        elif not isinstance(authors, list):
            authors = []
            
        return authors
        
    except Exception as e:
        logger.error(f"Error inferring authors: {e}")
        return []


def infer_paper_url(input_data: str) -> str:
    """
    Infer the paper URL from various research-related inputs.
    
    This function attempts to find the associated research paper from
    inputs like GitHub repositories, project pages, or partial URLs.
    
    Args:
        input_data: A URL, repository link, or other research-related input
        
    Returns:
        The paper URL (typically arXiv or Hugging Face papers), or empty string if not found
        
    Examples:
        >>> infer_paper_url("https://github.com/google-research/vision_transformer")
        "https://arxiv.org/abs/2010.11929"
        
        >>> infer_paper_url("Vision Transformer")
        "https://arxiv.org/abs/2010.11929"
    """
    if not input_data or not input_data.strip():
        return ""
    
    try:
        # Create row data structure
        row_data = {
            "Name": input_data if not input_data.startswith("http") else None,
            "Authors": [],
            "Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
            "Code": input_data if "github.com" in input_data else None,
            "Project": input_data if "github.io" in input_data else None,
            "Space": input_data if "huggingface.co/spaces" in input_data else None,
            "Model": input_data if "huggingface.co/models" in input_data else None,
            "Dataset": input_data if "huggingface.co/datasets" in input_data else None,
        }
        
        # Call the backend
        result = make_backend_request("infer-paper", row_data)
        
        # Extract paper URL from response
        paper_url = result.get("paper", "")
        return paper_url if paper_url else ""
        
    except Exception as e:
        logger.error(f"Error inferring paper: {e}")
        return ""


def infer_code_repository(input_data: str) -> str:
    """
    Infer the code repository URL from research-related inputs.
    
    This function attempts to find the associated code repository from
    inputs like paper URLs, project pages, or partial information.
    
    Args:
        input_data: A URL, paper link, or other research-related input
        
    Returns:
        The code repository URL (typically GitHub), or empty string if not found
        
    Examples:
        >>> infer_code_repository("https://arxiv.org/abs/2010.11929")
        "https://github.com/google-research/vision_transformer"
        
        >>> infer_code_repository("Vision Transformer")
        "https://github.com/google-research/vision_transformer"
    """
    if not input_data or not input_data.strip():
        return ""
    
    try:
        # Create row data structure
        row_data = {
            "Name": input_data if not input_data.startswith("http") else None,
            "Authors": [],
            "Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
            "Code": input_data if "github.com" in input_data else None,
            "Project": input_data if "github.io" in input_data else None,
            "Space": input_data if "huggingface.co/spaces" in input_data else None,
            "Model": input_data if "huggingface.co/models" in input_data else None,
            "Dataset": input_data if "huggingface.co/datasets" in input_data else None,
        }
        
        # Call the backend
        result = make_backend_request("infer-code", row_data)
        
        # Extract code URL from response
        code_url = result.get("code", "")
        return code_url if code_url else ""
        
    except Exception as e:
        logger.error(f"Error inferring code: {e}")
        return ""


def infer_research_name(input_data: str) -> str:
    """
    Infer the research paper or project name from various inputs.
    
    This function attempts to extract the formal name/title of a research
    paper or project from URLs, repositories, or partial information.
    
    Args:
        input_data: A URL, repository link, or other research-related input
        
    Returns:
        The research name/title, or empty string if not found
        
    Examples:
        >>> infer_research_name("https://arxiv.org/abs/2010.11929")
        "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"
        
        >>> infer_research_name("https://github.com/google-research/vision_transformer")
        "Vision Transformer"
    """
    if not input_data or not input_data.strip():
        return ""
    
    try:
        # Create row data structure
        row_data = {
            "Name": None,
            "Authors": [],
            "Paper": input_data if "arxiv" in input_data or "huggingface.co/papers" in input_data else None,
            "Code": input_data if "github.com" in input_data else None,
            "Project": input_data if "github.io" in input_data else None,
            "Space": input_data if "huggingface.co/spaces" in input_data else None,
            "Model": input_data if "huggingface.co/models" in input_data else None,
            "Dataset": input_data if "huggingface.co/datasets" in input_data else None,
        }
        
        # Call the backend
        result = make_backend_request("infer-name", row_data)
        
        # Extract name from response
        name = result.get("name", "")
        return name if name else ""
        
    except Exception as e:
        logger.error(f"Error inferring name: {e}")
        return ""


def classify_research_url(url: str) -> str:
    """
    Classify the type of research-related URL or input.
    
    This function determines what type of research resource a given URL
    or input represents (paper, code, model, dataset, etc.).
    
    Args:
        url: The URL or input to classify
        
    Returns:
        The field type: "Paper", "Code", "Space", "Model", "Dataset", "Project", or "Unknown"
        
    Examples:
        >>> classify_research_url("https://arxiv.org/abs/2010.11929")
        "Paper"
        
        >>> classify_research_url("https://github.com/google-research/vision_transformer")
        "Code"
        
        >>> classify_research_url("https://huggingface.co/google/vit-base-patch16-224")
        "Model"
    """
    if not url or not url.strip():
        return "Unknown"
    
    try:
        # Call the backend
        result = make_backend_request("infer-field", {"value": url})
        
        # Extract field from response
        field = result.get("field", "Unknown")
        return field if field else "Unknown"
        
    except Exception as e:
        logger.error(f"Error classifying URL: {e}")
        return "Unknown"


# Create Gradio interface
def create_demo():
    """Create the Gradio demo interface for testing."""
    
    with gr.Blocks(title="Research Tracker MCP Server") as demo:
        gr.Markdown("# Research Tracker MCP Server")
        gr.Markdown("Test the research inference utilities that are available through MCP.")
        
        with gr.Tab("Authors"):
            with gr.Row():
                author_input = gr.Textbox(
                    label="Input (URL, paper title, etc.)",
                    placeholder="https://arxiv.org/abs/2010.11929",
                    lines=1
                )
                author_output = gr.JSON(label="Authors")
            author_btn = gr.Button("Infer Authors")
            author_btn.click(infer_authors, inputs=author_input, outputs=author_output)
        
        with gr.Tab("Paper"):
            with gr.Row():
                paper_input = gr.Textbox(
                    label="Input (GitHub repo, project name, etc.)",
                    placeholder="https://github.com/google-research/vision_transformer",
                    lines=1
                )
                paper_output = gr.Textbox(label="Paper URL")
            paper_btn = gr.Button("Infer Paper")
            paper_btn.click(infer_paper_url, inputs=paper_input, outputs=paper_output)
        
        with gr.Tab("Code"):
            with gr.Row():
                code_input = gr.Textbox(
                    label="Input (paper URL, project name, etc.)",
                    placeholder="https://arxiv.org/abs/2010.11929",
                    lines=1
                )
                code_output = gr.Textbox(label="Code Repository URL")
            code_btn = gr.Button("Infer Code")
            code_btn.click(infer_code_repository, inputs=code_input, outputs=code_output)
        
        with gr.Tab("Name"):
            with gr.Row():
                name_input = gr.Textbox(
                    label="Input (URL, repo, etc.)",
                    placeholder="https://github.com/google-research/vision_transformer",
                    lines=1
                )
                name_output = gr.Textbox(label="Research Name/Title")
            name_btn = gr.Button("Infer Name")
            name_btn.click(infer_research_name, inputs=name_input, outputs=name_output)
        
        with gr.Tab("Classify"):
            with gr.Row():
                classify_input = gr.Textbox(
                    label="URL to classify",
                    placeholder="https://huggingface.co/google/vit-base-patch16-224",
                    lines=1
                )
                classify_output = gr.Textbox(label="URL Type")
            classify_btn = gr.Button("Classify URL")
            classify_btn.click(classify_research_url, inputs=classify_input, outputs=classify_output)
    
    return demo


if __name__ == "__main__":
    demo = create_demo()
    demo.launch(mcp_server=True, share=False)