Spaces:
Runtime error
Runtime error
add tabs
Browse files- .python-version +1 -0
- __pycache__/config.cpython-310.pyc +0 -0
- app.py +185 -27
- config.py +8 -0
- examples/cart1.jpg +0 -0
- examples/cart1.json +0 -7
- examples/cart2.jpg +0 -0
- examples/cart2.json +0 -7
- examples/cart3.jpg +0 -0
- examples/cart3.json +0 -7
- examples/cnmc1.bmp +0 -0
- examples/cnmc1.json +0 -7
- examples/cnmc2.bmp +0 -0
- examples/cnmc2.json +0 -7
- examples/cnmc3.bmp +0 -0
- examples/cnmc3.json +0 -7
- examples/cnmc4.bmp +0 -0
- examples/cnmc4.json +0 -7
- examples/cnmc5.bmp +0 -0
- examples/cnmc5.json +0 -7
- examples/cnmc6.bmp +0 -0
- examples/cnmc6.json +0 -7
- examples/cnmc7.bmp +0 -0
- examples/cnmc7.json +0 -7
- examples/cnmc8.bmp +0 -0
- examples/cnmc8.json +0 -7
- examples/cnmc9.bmp +0 -0
- examples/cnmc9.json +0 -7
- examples/tumor1.json +0 -7
- examples/tumor10.json +0 -7
- examples/tumor2.json +0 -7
- examples/tumor3.json +0 -7
- examples/tumor4.json +0 -7
- examples/tumor5.json +0 -7
- examples/tumor6.json +0 -7
- examples/tumor7.json +0 -7
- examples/tumor8.json +0 -7
- examples/tumor9.json +0 -7
- requirements.txt +3 -2
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.10
|
__pycache__/config.cpython-310.pyc
ADDED
|
Binary file (282 Bytes). View file
|
|
|
app.py
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Function to get logging level from environment variable
|
| 6 |
-
def get_logging_level(default_level=logging.
|
| 7 |
log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper()
|
| 8 |
if log_level_str == 'DEBUG':
|
| 9 |
return logging.DEBUG
|
|
@@ -18,24 +22,9 @@ def get_logging_level(default_level=logging.DEBUG): # Default to DEBUG for deta
|
|
| 18 |
else:
|
| 19 |
return default_level
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
logging.
|
| 24 |
-
_LOGGER = logging.getLogger(__name__)
|
| 25 |
-
|
| 26 |
-
# Explicitly set logging level for the vision-agent library
|
| 27 |
-
vision_agent_logger = logging.getLogger('vision_agent')
|
| 28 |
-
vision_agent_logger.setLevel(logging_level)
|
| 29 |
-
|
| 30 |
-
# Set logging level for Hugging Face libraries
|
| 31 |
-
hf_hub_logger = logging.getLogger('huggingface_hub')
|
| 32 |
-
hf_hub_logger.setLevel(logging_level)
|
| 33 |
-
|
| 34 |
-
datasets_logger = logging.getLogger('datasets')
|
| 35 |
-
datasets_logger.setLevel(logging_level)
|
| 36 |
-
|
| 37 |
-
# Print the logging level to verify it's set correctly
|
| 38 |
-
print(f"Logging level set to: {logging.getLevelName(logging_level)}")
|
| 39 |
|
| 40 |
from huggingface_hub import login
|
| 41 |
import time
|
|
@@ -44,7 +33,7 @@ from typing import *
|
|
| 44 |
from pillow_heif import register_heif_opener
|
| 45 |
register_heif_opener()
|
| 46 |
import vision_agent as va
|
| 47 |
-
from vision_agent.tools import register_tool, load_image, owl_v2, overlay_bounding_boxes, save_image
|
| 48 |
|
| 49 |
# Perform login using the token
|
| 50 |
hf_token = os.getenv("HF_TOKEN")
|
|
@@ -53,7 +42,8 @@ login(token=hf_token, add_to_git_credential=True)
|
|
| 53 |
import numpy as np
|
| 54 |
from PIL import Image
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
"""
|
| 58 |
Detects a brain tumor in the given image and returns the annotated image.
|
| 59 |
|
|
@@ -66,18 +56,66 @@ def detect_brain_tumor(image, seg_input, debug: bool = True):
|
|
| 66 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
| 67 |
"""
|
| 68 |
if debug:
|
| 69 |
-
|
| 70 |
|
| 71 |
# Step 2: Detect brain tumor using owl_v2
|
| 72 |
prompt = "detect brain tumor"
|
| 73 |
detections = owl_v2(prompt, image)
|
| 74 |
if debug:
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
# Step 3: Overlay bounding boxes on the image
|
| 78 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
| 79 |
if debug:
|
| 80 |
-
|
| 81 |
|
| 82 |
# Prepare annotations for AnnotatedImage output
|
| 83 |
annotations = []
|
|
@@ -92,7 +130,55 @@ def detect_brain_tumor(image, seg_input, debug: bool = True):
|
|
| 92 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
| 93 |
|
| 94 |
if debug:
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# Convert image to numpy array if it's not already
|
| 98 |
if isinstance(image_with_bboxes, Image.Image):
|
|
@@ -104,7 +190,7 @@ INTRO_TEXT="# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫"
|
|
| 104 |
|
| 105 |
with gr.Blocks(css="style.css") as demo:
|
| 106 |
gr.Markdown(INTRO_TEXT)
|
| 107 |
-
with gr.Tab("
|
| 108 |
with gr.Row():
|
| 109 |
with gr.Column():
|
| 110 |
image = gr.Image(type="numpy")
|
|
@@ -135,10 +221,82 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 135 |
annotated_image
|
| 136 |
]
|
| 137 |
seg_btn.click(
|
| 138 |
-
fn=
|
| 139 |
inputs=seg_inputs,
|
| 140 |
outputs=seg_outputs,
|
| 141 |
)
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
if __name__ == "__main__":
|
| 144 |
demo.queue(max_size=10).launch(debug=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
import sys
|
| 4 |
+
from config import WEAVE_PROJECT, WANDB_API_KEY
|
| 5 |
+
import weave
|
| 6 |
+
|
| 7 |
+
weave.init(WEAVE_PROJECT)
|
| 8 |
|
| 9 |
# Function to get logging level from environment variable
|
| 10 |
+
def get_logging_level(default_level=logging.INFO): # Default to DEBUG for detailed logs
|
| 11 |
log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper()
|
| 12 |
if log_level_str == 'DEBUG':
|
| 13 |
return logging.DEBUG
|
|
|
|
| 22 |
else:
|
| 23 |
return default_level
|
| 24 |
|
| 25 |
+
# Initialize logger
|
| 26 |
+
logging.basicConfig(level=get_logging_level(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 27 |
+
logger = logging.getLogger('vision_agent')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
from huggingface_hub import login
|
| 30 |
import time
|
|
|
|
| 33 |
from pillow_heif import register_heif_opener
|
| 34 |
register_heif_opener()
|
| 35 |
import vision_agent as va
|
| 36 |
+
from vision_agent.tools import register_tool, load_image, owl_v2, grounding_dino, florencev2_object_detection, overlay_bounding_boxes, save_image
|
| 37 |
|
| 38 |
# Perform login using the token
|
| 39 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
| 42 |
import numpy as np
|
| 43 |
from PIL import Image
|
| 44 |
|
| 45 |
+
@weave.op()
|
| 46 |
+
def detect_brain_tumor_owlv2(image, seg_input, debug: bool = True):
|
| 47 |
"""
|
| 48 |
Detects a brain tumor in the given image and returns the annotated image.
|
| 49 |
|
|
|
|
| 56 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
| 57 |
"""
|
| 58 |
if debug:
|
| 59 |
+
logger.debug(f"Image received, shape: {image.shape}")
|
| 60 |
|
| 61 |
# Step 2: Detect brain tumor using owl_v2
|
| 62 |
prompt = "detect brain tumor"
|
| 63 |
detections = owl_v2(prompt, image)
|
| 64 |
if debug:
|
| 65 |
+
logger.debug(f"Raw detections: {detections}")
|
| 66 |
+
|
| 67 |
+
# Step 3: Overlay bounding boxes on the image
|
| 68 |
+
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
| 69 |
+
if debug:
|
| 70 |
+
logger.debug("Bounding boxes overlaid on the image")
|
| 71 |
+
|
| 72 |
+
# Prepare annotations for AnnotatedImage output
|
| 73 |
+
annotations = []
|
| 74 |
+
for detection in detections:
|
| 75 |
+
label = detection['label']
|
| 76 |
+
score = detection['score']
|
| 77 |
+
bbox = detection['bbox']
|
| 78 |
+
x1, y1, x2, y2 = bbox
|
| 79 |
+
# Convert normalized coordinates to pixel coordinates
|
| 80 |
+
height, width = image.shape[:2]
|
| 81 |
+
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
| 82 |
+
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
| 83 |
+
|
| 84 |
+
if debug:
|
| 85 |
+
logger.debug(f"Annotations: {annotations}")
|
| 86 |
+
|
| 87 |
+
# Convert image to numpy array if it's not already
|
| 88 |
+
if isinstance(image_with_bboxes, Image.Image):
|
| 89 |
+
image_with_bboxes = np.array(image_with_bboxes)
|
| 90 |
+
|
| 91 |
+
return (image_with_bboxes, annotations)
|
| 92 |
+
|
| 93 |
+
@weave.op()
|
| 94 |
+
def detect_brain_tumor_dino(image, seg_input, debug: bool = True):
|
| 95 |
+
"""
|
| 96 |
+
Detects a brain tumor in the given image and returns the annotated image.
|
| 97 |
+
|
| 98 |
+
Parameters:
|
| 99 |
+
image: The input image (as numpy array provided by Gradio).
|
| 100 |
+
seg_input: The segmentation input (not used in this function, but required for Gradio).
|
| 101 |
+
debug (bool): Flag to enable logging for debugging purposes.
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
| 105 |
+
"""
|
| 106 |
+
if debug:
|
| 107 |
+
logger.debug(f"Image received, shape: {image.shape}")
|
| 108 |
+
|
| 109 |
+
# Step 2: Detect brain tumor using grounding_dino
|
| 110 |
+
prompt = "detect brain tumor"
|
| 111 |
+
detections = grounding_dino(prompt, image)
|
| 112 |
+
if debug:
|
| 113 |
+
logger.debug(f"Raw detections: {detections}")
|
| 114 |
|
| 115 |
# Step 3: Overlay bounding boxes on the image
|
| 116 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
| 117 |
if debug:
|
| 118 |
+
logger.debug("Bounding boxes overlaid on the image")
|
| 119 |
|
| 120 |
# Prepare annotations for AnnotatedImage output
|
| 121 |
annotations = []
|
|
|
|
| 130 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
| 131 |
|
| 132 |
if debug:
|
| 133 |
+
logger.debug(f"Annotations: {annotations}")
|
| 134 |
+
|
| 135 |
+
# Convert image to numpy array if it's not already
|
| 136 |
+
if isinstance(image_with_bboxes, Image.Image):
|
| 137 |
+
image_with_bboxes = np.array(image_with_bboxes)
|
| 138 |
+
|
| 139 |
+
return (image_with_bboxes, annotations)
|
| 140 |
+
|
| 141 |
+
@weave.op()
|
| 142 |
+
def detect_brain_tumor_florence2(image, seg_input, debug: bool = True):
|
| 143 |
+
"""
|
| 144 |
+
Detects a brain tumor in the given image and returns the annotated image.
|
| 145 |
+
|
| 146 |
+
Parameters:
|
| 147 |
+
image: The input image (as numpy array provided by Gradio).
|
| 148 |
+
seg_input: The segmentation input (not used in this function, but required for Gradio).
|
| 149 |
+
debug (bool): Flag to enable logging for debugging purposes.
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
| 153 |
+
"""
|
| 154 |
+
if debug:
|
| 155 |
+
logger.debug(f"Image received, shape: {image.shape}")
|
| 156 |
+
|
| 157 |
+
# Step 2: Detect brain tumor using florencev2 - NO PROMPT
|
| 158 |
+
prompt = "detect brain tumor"
|
| 159 |
+
detections = florencev2_object_detection(prompt)
|
| 160 |
+
if debug:
|
| 161 |
+
logger.debug(f"Raw detections: {detections}")
|
| 162 |
+
|
| 163 |
+
# Step 3: Overlay bounding boxes on the image
|
| 164 |
+
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
| 165 |
+
if debug:
|
| 166 |
+
logger.debug("Bounding boxes overlaid on the image")
|
| 167 |
+
|
| 168 |
+
# Prepare annotations for AnnotatedImage output
|
| 169 |
+
annotations = []
|
| 170 |
+
for detection in detections:
|
| 171 |
+
label = detection['label']
|
| 172 |
+
score = detection['score']
|
| 173 |
+
bbox = detection['bbox']
|
| 174 |
+
x1, y1, x2, y2 = bbox
|
| 175 |
+
# Convert normalized coordinates to pixel coordinates
|
| 176 |
+
height, width = image.shape[:2]
|
| 177 |
+
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
| 178 |
+
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
| 179 |
+
|
| 180 |
+
if debug:
|
| 181 |
+
logger.debug(f"Annotations: {annotations}")
|
| 182 |
|
| 183 |
# Convert image to numpy array if it's not already
|
| 184 |
if isinstance(image_with_bboxes, Image.Image):
|
|
|
|
| 190 |
|
| 191 |
with gr.Blocks(css="style.css") as demo:
|
| 192 |
gr.Markdown(INTRO_TEXT)
|
| 193 |
+
with gr.Tab("Object Detection - Owl V2"):
|
| 194 |
with gr.Row():
|
| 195 |
with gr.Column():
|
| 196 |
image = gr.Image(type="numpy")
|
|
|
|
| 221 |
annotated_image
|
| 222 |
]
|
| 223 |
seg_btn.click(
|
| 224 |
+
fn=detect_brain_tumor_owlv2,
|
| 225 |
inputs=seg_inputs,
|
| 226 |
outputs=seg_outputs,
|
| 227 |
)
|
| 228 |
|
| 229 |
+
with gr.Tab("Object Detection - DINO"):
|
| 230 |
+
with gr.Row():
|
| 231 |
+
with gr.Column():
|
| 232 |
+
image = gr.Image(type="numpy")
|
| 233 |
+
seg_input = gr.Text(label="Entities to Segment/Detect", value="detect brain tumor")
|
| 234 |
+
|
| 235 |
+
with gr.Column():
|
| 236 |
+
annotated_image = gr.AnnotatedImage(label="Output")
|
| 237 |
+
|
| 238 |
+
seg_btn = gr.Button("Submit")
|
| 239 |
+
examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
|
| 240 |
+
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
|
| 241 |
+
["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "detect brain tumor"],
|
| 242 |
+
["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg", "detect brain tumor"],
|
| 243 |
+
["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg", "detect brain tumor"],
|
| 244 |
+
["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg", "detect brain tumor"],
|
| 245 |
+
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
|
| 246 |
+
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
|
| 247 |
+
]
|
| 248 |
+
gr.Examples(
|
| 249 |
+
examples=examples,
|
| 250 |
+
inputs=[image, seg_input],
|
| 251 |
+
)
|
| 252 |
+
seg_inputs = [
|
| 253 |
+
image,
|
| 254 |
+
seg_input
|
| 255 |
+
]
|
| 256 |
+
seg_outputs = [
|
| 257 |
+
annotated_image
|
| 258 |
+
]
|
| 259 |
+
seg_btn.click(
|
| 260 |
+
fn=detect_brain_tumor_dino,
|
| 261 |
+
inputs=seg_inputs,
|
| 262 |
+
outputs=seg_outputs,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
with gr.Tab("Object Detection - Florence2"):
|
| 266 |
+
with gr.Row():
|
| 267 |
+
with gr.Column():
|
| 268 |
+
image = gr.Image(type="numpy")
|
| 269 |
+
seg_input = gr.Text(label="Entities to Segment/Detect - PROMPT IS NOT PASSED TO FLORENCE2", value="detect brain tumor")
|
| 270 |
+
|
| 271 |
+
with gr.Column():
|
| 272 |
+
annotated_image = gr.AnnotatedImage(label="Output")
|
| 273 |
+
|
| 274 |
+
seg_btn = gr.Button("Submit")
|
| 275 |
+
examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
|
| 276 |
+
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
|
| 277 |
+
["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "detect brain tumor"],
|
| 278 |
+
["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg", "detect brain tumor"],
|
| 279 |
+
["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg", "detect brain tumor"],
|
| 280 |
+
["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg", "detect brain tumor"],
|
| 281 |
+
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
|
| 282 |
+
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
|
| 283 |
+
]
|
| 284 |
+
gr.Examples(
|
| 285 |
+
examples=examples,
|
| 286 |
+
inputs=[image, seg_input],
|
| 287 |
+
)
|
| 288 |
+
seg_inputs = [
|
| 289 |
+
image,
|
| 290 |
+
seg_input
|
| 291 |
+
]
|
| 292 |
+
seg_outputs = [
|
| 293 |
+
annotated_image
|
| 294 |
+
]
|
| 295 |
+
seg_btn.click(
|
| 296 |
+
fn=detect_brain_tumor_dino,
|
| 297 |
+
inputs=seg_inputs,
|
| 298 |
+
outputs=seg_outputs,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
if __name__ == "__main__":
|
| 302 |
demo.queue(max_size=10).launch(debug=True)
|
config.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# config.py
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
WANDB_API_KEY = os.getenv('WANDB_API_KEY')
|
| 8 |
+
WEAVE_PROJECT = "omniscience-app"
|
examples/cart1.jpg
DELETED
|
Binary file (99.9 kB)
|
|
|
examples/cart1.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cart1",
|
| 3 |
-
"comment": "Computer illustration of CAR-T therapy",
|
| 4 |
-
"model": "paligemma-3b-mix-224",
|
| 5 |
-
"prompt": "segment cells",
|
| 6 |
-
"license": "https://www.cancertherapyadvisor.com/wp-content/uploads/sites/12/2019/09/CAR-T_G_864309570-860x574.jpg"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cart2.jpg
DELETED
|
Binary file (179 kB)
|
|
|
examples/cart2.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cart2",
|
| 3 |
-
"comment": "Cancerous T-Cells Using Car-T Therapy",
|
| 4 |
-
"model": "paligemma-3b-mix-224",
|
| 5 |
-
"prompt": "segment cells",
|
| 6 |
-
"license": "https://www.coherentmarketinsights.com/blogimg/uploads/2017/02/Cancerous-T-Cells-Using-CAR-T-Therapy.jpg"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cart3.jpg
DELETED
|
Binary file (87.2 kB)
|
|
|
examples/cart3.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cart3",
|
| 3 |
-
"comment": "CAR T cell therapy",
|
| 4 |
-
"model": "paligemma-3b-mix-224",
|
| 5 |
-
"prompt": "segment cells",
|
| 6 |
-
"license": "https://delveinsight-blog.s3.amazonaws.com/blog/wp-content/uploads/2018/12/09022609/adusumillia-car_0_3x2.jpg"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc1.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc1.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc1",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc2.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc2.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc2",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc3.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc3.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc3",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc4.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc4.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc4",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc5.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc5.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc5",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc6.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc6.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc6",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc7.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc7.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc7",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc8.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc8.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc8",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/cnmc9.bmp
DELETED
|
Binary file (609 kB)
|
|
|
examples/cnmc9.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "cnmc9",
|
| 3 |
-
"comment": "cnmc-leukemia-2019",
|
| 4 |
-
"model": "paligemma-cnmc-ft",
|
| 5 |
-
"prompt": "Are these cells healthy or cancerous?",
|
| 6 |
-
"license": "https://www.cancerimagingarchive.net/collection/c-nmc-2019/"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor1.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor1",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor10.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor10",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor2.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor2",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor3.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor3",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor4.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor4",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor5.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor5",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor6.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor6",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor7.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor7",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor8.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor8",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/tumor9.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"name": "tumor9",
|
| 3 |
-
"comment": "",
|
| 4 |
-
"model": "",
|
| 5 |
-
"prompt": "detect cell tumor",
|
| 6 |
-
"license": ""
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
git+https://github.com/donbr/vision-agent.git
|
| 2 |
git+https://github.com/donbr/vision-agent-tools.git
|
| 3 |
-
spaces
|
| 4 |
pillow
|
| 5 |
pillow-heif
|
| 6 |
-
weave
|
|
|
|
|
|
|
|
|
| 1 |
git+https://github.com/donbr/vision-agent.git
|
| 2 |
git+https://github.com/donbr/vision-agent-tools.git
|
|
|
|
| 3 |
pillow
|
| 4 |
pillow-heif
|
| 5 |
+
weave
|
| 6 |
+
huggingface-hub
|
| 7 |
+
gradio
|