Spaces:
Runtime error
Runtime error
| import os | |
| import logging | |
| import sys | |
| from config import WEAVE_PROJECT, WANDB_API_KEY | |
| import weave | |
| from model_utils import get_model_summary, install_flash_attn | |
| # Install required package | |
| install_flash_attn() | |
| weave.init(WEAVE_PROJECT) | |
| # Function to get logging level from environment variable | |
| def get_logging_level(default_level=logging.INFO): # Default to DEBUG for detailed logs | |
| log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper() | |
| if log_level_str == 'DEBUG': | |
| return logging.DEBUG | |
| elif log_level_str == 'INFO': | |
| return logging.INFO | |
| elif log_level_str == 'WARNING': | |
| return logging.WARNING | |
| elif log_level_str == 'ERROR': | |
| return logging.ERROR | |
| elif log_level_str == 'CRITICAL': | |
| return logging.CRITICAL | |
| else: | |
| return default_level | |
| # Initialize logger | |
| logging.basicConfig(level=get_logging_level(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger('vision_agent') | |
| from huggingface_hub import login | |
| import time | |
| import gradio as gr | |
| from typing import * | |
| from pillow_heif import register_heif_opener | |
| register_heif_opener() | |
| import vision_agent as va | |
| from vision_agent.tools import register_tool, load_image, owl_v2, grounding_dino, florencev2_object_detection, overlay_bounding_boxes, save_image | |
| # Perform login using the token | |
| hf_token = os.getenv("HF_TOKEN") | |
| login(token=hf_token, add_to_git_credential=True) | |
| import numpy as np | |
| from PIL import Image | |
| def detect_object_owlv2(image, seg_input, debug: bool = True): | |
| """ | |
| Detects a brain tumor in the given image and returns the annotated image. | |
| Parameters: | |
| image: The input image (as numpy array provided by Gradio). | |
| seg_input: The segmentation input (not used in this function, but required for Gradio). | |
| debug (bool): Flag to enable logging for debugging purposes. | |
| Returns: | |
| tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples) | |
| """ | |
| # Step 2: Detect brain tumor using owl_v2 | |
| prompt = seg_input | |
| detections = owl_v2(prompt, image) | |
| # Step 3: Overlay bounding boxes on the image | |
| image_with_bboxes = overlay_bounding_boxes(image, detections) | |
| # Prepare annotations for AnnotatedImage output | |
| annotations = [] | |
| for detection in detections: | |
| label = detection['label'] | |
| score = detection['score'] | |
| bbox = detection['bbox'] | |
| x1, y1, x2, y2 = bbox | |
| # Convert normalized coordinates to pixel coordinates | |
| height, width = image.shape[:2] | |
| x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height) | |
| annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}")) | |
| # Convert image to numpy array if it's not already | |
| if isinstance(image_with_bboxes, Image.Image): | |
| image_with_bboxes = np.array(image_with_bboxes) | |
| return (image_with_bboxes, annotations) | |
| def detect_object_dino(image, seg_input, debug: bool = True): | |
| """ | |
| Detects a brain tumor in the given image and returns the annotated image. | |
| Parameters: | |
| image: The input image (as numpy array provided by Gradio). | |
| seg_input: The segmentation input (not used in this function, but required for Gradio). | |
| debug (bool): Flag to enable logging for debugging purposes. | |
| Returns: | |
| tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples) | |
| """ | |
| # Step 2: Detect brain tumor using grounding_dino | |
| prompt = seg_input | |
| detections = grounding_dino(prompt, image) | |
| # Step 3: Overlay bounding boxes on the image | |
| image_with_bboxes = overlay_bounding_boxes(image, detections) | |
| # Prepare annotations for AnnotatedImage output | |
| annotations = [] | |
| for detection in detections: | |
| label = detection['label'] | |
| score = detection['score'] | |
| bbox = detection['bbox'] | |
| x1, y1, x2, y2 = bbox | |
| # Convert normalized coordinates to pixel coordinates | |
| height, width = image.shape[:2] | |
| x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height) | |
| annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}")) | |
| # Convert image to numpy array if it's not already | |
| if isinstance(image_with_bboxes, Image.Image): | |
| image_with_bboxes = np.array(image_with_bboxes) | |
| return (image_with_bboxes, annotations) | |
| def detect_object_florence2(image, seg_input, debug: bool = True): | |
| """ | |
| Detects a brain tumor in the given image and returns the annotated image. | |
| Parameters: | |
| image: The input image (as numpy array provided by Gradio). | |
| seg_input: The segmentation input (not used in this function, but required for Gradio). | |
| debug (bool): Flag to enable logging for debugging purposes. | |
| Returns: | |
| tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples) | |
| """ | |
| # Step 2: Detect brain tumor using florencev2 - NO PROMPT | |
| detections = florencev2_object_detection(image) | |
| # Step 3: Overlay bounding boxes on the image | |
| image_with_bboxes = overlay_bounding_boxes(image, detections) | |
| # Prepare annotations for AnnotatedImage output | |
| annotations = [] | |
| for detection in detections: | |
| label = detection['label'] | |
| score = detection['score'] | |
| bbox = detection['bbox'] | |
| x1, y1, x2, y2 = bbox | |
| # Convert normalized coordinates to pixel coordinates | |
| height, width = image.shape[:2] | |
| x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height) | |
| annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}")) | |
| # Convert image to numpy array if it's not already | |
| if isinstance(image_with_bboxes, Image.Image): | |
| image_with_bboxes = np.array(image_with_bboxes) | |
| return (image_with_bboxes, annotations) | |
| def handle_model_summary(model_name): | |
| model_summary, error_message = get_model_summary(model_name) | |
| if error_message: | |
| return error_message, "" | |
| return model_summary, "" | |
| INTRO_TEXT="""# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫 | |
| - these are the results from the base non-finetuned models | |
| """ | |
| with gr.Blocks(theme="sudeepshouche/minimalist") as demo: | |
| gr.Markdown(INTRO_TEXT) | |
| with gr.Tab("Object Detection - Owl V2"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="numpy") | |
| seg_input = gr.Text(label="Entities to Segment/Detect") | |
| with gr.Column(): | |
| annotated_image = gr.AnnotatedImage(label="Output") | |
| seg_btn = gr.Button("Submit") | |
| examples = [ | |
| ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"], | |
| ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"], | |
| ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"], | |
| ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"], | |
| ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"], | |
| ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"], | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[image, seg_input], | |
| ) | |
| seg_inputs = [ | |
| image, | |
| seg_input | |
| ] | |
| seg_outputs = [ | |
| annotated_image | |
| ] | |
| seg_btn.click( | |
| fn=detect_object_owlv2, | |
| inputs=seg_inputs, | |
| outputs=seg_outputs, | |
| ) | |
| with gr.Tab("Object Detection - DINO"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="numpy") | |
| seg_input = gr.Text(label="Entities to Segment/Detect") | |
| with gr.Column(): | |
| annotated_image = gr.AnnotatedImage(label="Output") | |
| seg_btn = gr.Button("Submit") | |
| examples = [ | |
| ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"], | |
| ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"], | |
| ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"], | |
| ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"], | |
| ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"], | |
| ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"], | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[image, seg_input], | |
| ) | |
| seg_inputs = [ | |
| image, | |
| seg_input | |
| ] | |
| seg_outputs = [ | |
| annotated_image | |
| ] | |
| seg_btn.click( | |
| fn=detect_object_dino, | |
| inputs=seg_inputs, | |
| outputs=seg_outputs, | |
| ) | |
| with gr.Tab("Object Detection - Florence2"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="numpy") | |
| seg_input = gr.Text(label="Entities to Segment/Detect") | |
| with gr.Column(): | |
| annotated_image = gr.AnnotatedImage(label="Output") | |
| seg_btn = gr.Button("Submit") | |
| examples = [ | |
| ["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "<OD>"], | |
| ["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "<OD>"], | |
| ["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "<OD>"], | |
| ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "<OD>"], | |
| ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "<OD>"], | |
| ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "<OD>"], | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[image, seg_input], | |
| ) | |
| seg_inputs = [ | |
| image, | |
| seg_input | |
| ] | |
| seg_outputs = [ | |
| annotated_image | |
| ] | |
| seg_btn.click( | |
| fn=detect_object_florence2, | |
| inputs=seg_inputs, | |
| outputs=seg_outputs, | |
| ) | |
| with gr.Tab("Model Explorer"): | |
| gr.Markdown("## Retrieve and Display Model Architecture") | |
| model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name to retrieve its architecture...") | |
| vision_examples = gr.Examples( | |
| examples=[ | |
| ["facebook/sam-vit-huge"], | |
| ["google/owlv2-base-patch16-ensemble"], | |
| ["IDEA-Research/grounding-dino-base"], | |
| ["microsoft/Florence-2-large-ft"], | |
| ["google/paligemma-3b-mix-224"], | |
| ["llava-hf/llava-v1.6-mistral-7b-hf"], | |
| ["vikhyatk/moondream2"], | |
| ["microsoft/Phi-3-vision-128k-instruct"], | |
| ["HuggingFaceM4/idefics2-8b-chatty"] | |
| ], | |
| inputs=model_name_input | |
| ) | |
| model_submit_button = gr.Button("Submit") | |
| model_output = gr.Textbox(label="Model Architecture", lines=20, placeholder="Model architecture will appear here...", show_copy_button=True) | |
| error_output = gr.Textbox(label="Error", lines=10, placeholder="Exceptions will appear here...", show_copy_button=True) | |
| model_submit_button.click(fn=handle_model_summary, inputs=model_name_input, outputs=[model_output, error_output]) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch(debug=True) | |