omniscience-poc / app.py
donb-hf's picture
initial commit
1cfb5a5
raw
history blame
7.71 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
# import peft
# import spaces
import requests
import copy
from PIL import Image, ImageDraw, ImageFont
import io
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import random
import numpy as np
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
models = {
'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(),
'dwb2023/florence2-large-bccd-base-ft': AutoModelForCausalLM.from_pretrained('dwb2023/florence2-large-bccd-base-ft', trust_remote_code=True).to("cuda").eval(),
}
processors = {
'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
'dwb2023/florence2-large-bccd-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
}
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
# spaces.GPU
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'):
model = models[model_id]
processor = processors[model_id]
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
ax.axis('off')
return fig
def draw_polygons(image, prediction, fill_mask=False):
draw = ImageDraw.Draw(image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if fill_mask:
draw.polygon(_polygon, outline=color, fill=fill_color)
else:
draw.polygon(_polygon, outline=color)
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
return image
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
fill=color)
return image
def process_image(image, task_prompt, text_input=None, model_id='dwb2023/florence2-large-bccd-base-ft'):
image = Image.fromarray(image) # Convert NumPy array to PIL Image
if task_prompt == 'Object Detection':
task_prompt = '<OD>'
results = run_example(task_prompt, image, model_id=model_id)
fig = plot_bbox(image, results['<OD>'])
return results, fig_to_pil(fig)
else:
return "", None # Return empty string and None for unknown task prompts
single_task_list =[
'Object Detection'
]
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
gr.Markdown("## OmniScience - fine tuned VLM models for use in function calling 🔧")
gr.Markdown("- This is a proof-of-concept for the Florence-2 model, focusing on Object Detection <OD> tasks.")
gr.Markdown("- Fine-tuned on the [Roboflow BCCD dataset](https://universe.roboflow.com/roboflow-100/bccd-ouzjz/dataset/2), this model can detect blood cells and types in images.")
gr.Markdown("")
gr.Markdown("BCCD Datasets on Hugging Face:")
gr.Markdown("- [Florence 2](https://huggingface.co/datasets/dwb2023/roboflow100-bccd-florence2/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg), [PaliGemma](https://huggingface.co/datasets/dwb2023/roboflow-bccd-paligemma/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg)")
with gr.Tab(label="Florence-2 Object Detection"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large-ft')
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Object Detection")
text_input = gr.Textbox(label="Text Input", placeholder="Not used for Florence-2 Object Detection")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
output_img = gr.Image(label="Output Image")
gr.Examples(
examples=[
["examples/bccd-test/BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00044_jpg.rf.1c44102fcdf64fd178f1f16bb988d5cf.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00062_jpg.rf.fbed5373cd2e0e732092ed5c7b28aa19.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00090_jpg.rf.7e3d419774b20ef93d4ec6c4be8f64df.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00112_jpg.rf.6b8d185de08e65c6d765c824bb76ec68.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00113_jpg.rf.ab69dfaa52c1b3249cf44fa66afbb619.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00120_jpg.rf.4a2f84ca3564ef453b12ceb9c852e32e.jpg", 'Object Detection'],
],
inputs=[input_img, task_prompt],
outputs=[output_text, output_img],
fn=process_image,
cache_examples=True,
label='Try examples'
)
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
demo.launch(debug=True)