Spaces:
Runtime error
Runtime error
File size: 4,533 Bytes
fc1301c 9aa57c1 fc1301c 9eaa1af fc1301c 9eaa1af fc1301c 9eaa1af fc1301c 9eaa1af fc1301c 9eaa1af 9321666 fc1301c 9eaa1af fc1301c 9eaa1af fc1301c 9eaa1af fc1301c 811b009 fc1301c 8705a13 fc1301c 8705a13 811b009 fc1301c 9eaa1af fc1301c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
LlamaTokenizer,
)
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 512
DESCRIPTION = """\
# OpenELM-270M-Instruct -- Running on CPU
This Space demonstrates [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple. Please, check the original model card for details.
For detail on the OpenELM model refer to the Paper page [here](https://huggingface.co/papers/2404.14619)
For detail on the pre-training, instruct tuning, and parameter-efficient finetuning process refer to the [OpenELM page in the CoreNet GitHub repository](https://github.com/apple/corenet/tree/main/projects/openelm)
"""
LICENSE = """
<p/>
---
As a derivative work of [apple/OpenELM-270M-Instruct](https://huggingface.co/apple/OpenELM-270M-Instruct) by Apple,
this demo is governed by the original [license](https://huggingface.co/apple/OpenELM-270M-Instruct/blob/main/LICENSE)
Based on the [Norod78/OpenELM_3B_Demo](https://huggingface.co/spaces/Norod78/OpenELM_3B_Demo) space.
"""
model = AutoModelForCausalLM.from_pretrained(
"apple/OpenELM-270M-Instruct",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-hf",
trust_remote_code=True,
tokenizer_class=LlamaTokenizer,
)
if tokenizer.pad_token == None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.eos_token_id
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.1,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.4,
) -> Iterator[str]:
historical_text = ""
#Prepend the entire chat history to the message with new lines between each message
for user, assistant in chat_history:
historical_text += f"\n{user}\n{assistant}"
if len(historical_text) > 0:
message = historical_text + f"\n{message}"
input_ids = tokenizer([message], return_tensors="pt").input_ids
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=False,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.4,
),
],
stop_btn=None,
examples=[
["Explain quantum physics in 5 words or less:"],
["Question: What do you call a bear with no teeth?\nAnswer:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|