dvj4 commited on
Commit
94f4a6d
·
verified ·
1 Parent(s): d74cdda

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -3
app.py CHANGED
@@ -2,16 +2,38 @@ from PIL import Image
2
  import numpy as np
3
  import streamlit as st
4
 
 
 
 
5
  # Define function to process uploaded image
6
  def process_image(image):
7
  # Convert image to numpy array
8
  img_array = np.array(image)
9
 
10
  # Dummy sidewalk segmentation (replace with your actual segmentation algorithm)
11
- segmentation_result = np.zeros_like(img_array)
12
- segmentation_result[:, :, 1] = 255 # Set sidewalk area to green (RGB: 0, 255, 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- return segmentation_result
15
 
16
  # Define Shiny app
17
  def main():
 
2
  import numpy as np
3
  import streamlit as st
4
 
5
+ from PIL import Image
6
+ import numpy as np
7
+
8
  # Define function to process uploaded image
9
  def process_image(image):
10
  # Convert image to numpy array
11
  img_array = np.array(image)
12
 
13
  # Dummy sidewalk segmentation (replace with your actual segmentation algorithm)
14
+ patch_size = 128
15
+ step = 128
16
+
17
+ all_img_patches = []
18
+
19
+ for i in range(0, img_array.shape[0] - patch_size + 1, step):
20
+ for j in range(0, img_array.shape[1] - patch_size + 1, step):
21
+ single_patch_img = img_array[i:i + patch_size, j:j + patch_size]
22
+ all_img_patches.append(single_patch_img)
23
+
24
+ images = np.array(all_img_patches)
25
+
26
+ # Perform your actual image processing here
27
+ # Replace the code below with your segmentation algorithm or any other processing you need
28
+ # This is just a dummy example to show how to process the image
29
+ processed_images = []
30
+ for img in images:
31
+ processed_image = np.mean(img, axis=-1) # Example: Convert to grayscale
32
+ processed_images.append(processed_image)
33
+
34
+ processed_images = np.array(processed_images)
35
 
36
+ return processed_images
37
 
38
  # Define Shiny app
39
  def main():