diff --git "a/Milestone_3_Part_1.ipynb" "b/Milestone_3_Part_1.ipynb" new file mode 100644--- /dev/null +++ "b/Milestone_3_Part_1.ipynb" @@ -0,0 +1,4294 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "7Tbk85xIbmXo", + "outputId": "e6d83dec-d564-4641-fd95-a210bb9ff60f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Requirement already satisfied: shap in /usr/local/lib/python3.9/dist-packages (0.41.0)\n", + "Requirement already satisfied: cloudpickle in /usr/local/lib/python3.9/dist-packages (from shap) (2.2.1)\n", + "Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from shap) (1.5.3)\n", + "Requirement already satisfied: slicer==0.0.7 in /usr/local/lib/python3.9/dist-packages (from shap) (0.0.7)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.9/dist-packages (from shap) (1.10.1)\n", + "Requirement already satisfied: numba in /usr/local/lib/python3.9/dist-packages (from shap) (0.56.4)\n", + "Requirement already satisfied: tqdm>4.25.0 in /usr/local/lib/python3.9/dist-packages (from shap) (4.65.0)\n", + "Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.9/dist-packages (from shap) (23.0)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.9/dist-packages (from shap) (1.2.2)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from shap) (1.22.4)\n", + "Requirement already satisfied: setuptools in /usr/local/lib/python3.9/dist-packages (from numba->shap) (67.6.1)\n", + "Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/python3.9/dist-packages (from numba->shap) (0.39.1)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas->shap) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->shap) (2022.7.1)\n", + "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from scikit-learn->shap) (1.2.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from scikit-learn->shap) (3.1.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas->shap) (1.16.0)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "
" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.9/dist-packages (1.2.2)\n", + "Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.9/dist-packages (from scikit-learn) (1.22.4)\n", + "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.9/dist-packages (from scikit-learn) (1.10.1)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from scikit-learn) (3.1.0)\n", + "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from scikit-learn) (1.2.0)\n", + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Requirement already satisfied: optuna in /usr/local/lib/python3.9/dist-packages (3.1.1)\n", + "Requirement already satisfied: cmaes>=0.9.1 in /usr/local/lib/python3.9/dist-packages (from optuna) (0.9.1)\n", + "Requirement already satisfied: sqlalchemy>=1.3.0 in /usr/local/lib/python3.9/dist-packages (from optuna) (2.0.9)\n", + "Requirement already satisfied: colorlog in /usr/local/lib/python3.9/dist-packages (from optuna) (6.7.0)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from optuna) (23.0)\n", + "Requirement already satisfied: PyYAML in /usr/local/lib/python3.9/dist-packages (from optuna) (6.0)\n", + "Requirement already satisfied: alembic>=1.5.0 in /usr/local/lib/python3.9/dist-packages (from optuna) (1.10.3)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.9/dist-packages (from optuna) (4.65.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from optuna) (1.22.4)\n", + "Requirement already satisfied: typing-extensions>=4 in /usr/local/lib/python3.9/dist-packages (from alembic>=1.5.0->optuna) (4.5.0)\n", + "Requirement already satisfied: Mako in /usr/local/lib/python3.9/dist-packages (from alembic>=1.5.0->optuna) (1.2.4)\n", + "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.9/dist-packages (from sqlalchemy>=1.3.0->optuna) (2.0.2)\n", + "Requirement already satisfied: MarkupSafe>=0.9.2 in /usr/local/lib/python3.9/dist-packages (from Mako->alembic>=1.5.0->optuna) (2.1.2)\n", + "1460\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \\\n", + "0 1 60 RL 65.0 8450 Pave NaN Reg \n", + "1 2 20 RL 80.0 9600 Pave NaN Reg \n", + "2 3 60 RL 68.0 11250 Pave NaN IR1 \n", + "3 4 70 RL 60.0 9550 Pave NaN IR1 \n", + "4 5 60 RL 84.0 14260 Pave NaN IR1 \n", + "\n", + " LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold \\\n", + "0 Lvl AllPub ... 0 NaN NaN NaN 0 2 \n", + "1 Lvl AllPub ... 0 NaN NaN NaN 0 5 \n", + "2 Lvl AllPub ... 0 NaN NaN NaN 0 9 \n", + "3 Lvl AllPub ... 0 NaN NaN NaN 0 2 \n", + "4 Lvl AllPub ... 0 NaN NaN NaN 0 12 \n", + "\n", + " YrSold SaleType SaleCondition SalePrice \n", + "0 2008 WD Normal 208500 \n", + "1 2007 WD Normal 181500 \n", + "2 2008 WD Normal 223500 \n", + "3 2006 WD Abnorml 140000 \n", + "4 2008 WD Normal 250000 \n", + "\n", + "[5 rows x 81 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdMSSubClassMSZoningLotFrontageLotAreaStreetAlleyLotShapeLandContourUtilities...PoolAreaPoolQCFenceMiscFeatureMiscValMoSoldYrSoldSaleTypeSaleConditionSalePrice
0160RL65.08450PaveNaNRegLvlAllPub...0NaNNaNNaN022008WDNormal208500
1220RL80.09600PaveNaNRegLvlAllPub...0NaNNaNNaN052007WDNormal181500
2360RL68.011250PaveNaNIR1LvlAllPub...0NaNNaNNaN092008WDNormal223500
3470RL60.09550PaveNaNIR1LvlAllPub...0NaNNaNNaN022006WDAbnorml140000
4560RL84.014260PaveNaNIR1LvlAllPub...0NaNNaNNaN0122008WDNormal250000
\n", + "

5 rows × 81 columns

\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import xgboost as xgb\n", + "!pip install shap\n", + "import shap\n", + "shap.initjs()\n", + "!pip install -U scikit-learn\n", + "from sklearn.model_selection import train_test_split\n", + "!pip install optuna\n", + "import optuna\n", + "path= \"/content/drive/MyDrive/train.csv\"\n", + "data=pd.read_csv(path, header=0)\n", + "print(len(data))\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "source": [ + "#Get Features\n", + "y= data['SalePrice']\n", + "x= data[[\"LotArea\",\"OverallQual\", \"OverallCond\", \"YearBuilt\",\"TotRmsAbvGrd\",\"GarageArea\"]]\n", + "#Split the data using the scikit-learn library and having a train test split with validation sets\n", + "x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=0)\n", + "x_train.shape, x_val.shape, y_train.shape, y_val.shape\n", + "# make a new regressor model \n", + "regressor = xgb.XGBRegressor(objective ='reg:squarederror', \n", + " colsample_bytree = 1, \n", + " eta=0.3, \n", + " learning_rate = 0.01,\n", + " max_depth = 5, \n", + " alpha = 10, \n", + " n_estimators = 500)\n", + "# fit on training set\n", + "regressor.fit(x_train, y_train) \n", + "# predict on validation set\n", + "y_pred = regressor.predict(x_val)\n", + "# calculate Root Mean Square Error\n", + "from sklearn.metrics import mean_squared_error\n", + "root_mean_squared_error = mean_squared_error(y_val, y_pred, squared=False)\n", + "root_mean_squared_error" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "X42ZpF0YcLBv", + "outputId": "34646885-5aca-428b-d3a1-7b9535854945" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "38378.44068863984" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "def objective(n_trials):\n", + " params = {\n", + " \"n_estimators\": n_trials.suggest_int(\"n_estimators\", 100, 2000, step=100),\n", + " \"learning_rate\": n_trials.suggest_float(\"learning_rate\", 1e-4, 0.3, log=True),\n", + " \"max_depth\": n_trials.suggest_int(\"max_depth\", 3, 15),\n", + " \"n_iter_no_change\": 50,\n", + " }\n", + " dtrain = xgb.DMatrix(data = x_train, label = y_train)\n", + " dval = xgb.DMatrix(data = x_val, label = y_val)\n", + "\n", + " regressor = xgb.train(params, dtrain) \n", + " y_pred = regressor.predict(dval)\n", + " rmse = mean_squared_error(y_val, y_pred, squared=False)\n", + "\n", + " return rmse" + ], + "metadata": { + "id": "QuMqCZDzi2fu" + }, + "execution_count": 19, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "study = optuna.create_study(direction=\"minimize\")\n", + "study.optimize(objective, n_trials=500)\n", + "\n", + "print(f\"Optimized RMSE: {study.best_value:.4f}\")\n", + "print(\"Best params:\")\n", + "for key, value in study.best_params.items():\n", + " print(f\"\\t{key}: {value}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IxSTCUOTnrew", + "outputId": "8d39b8b2-f4b6-4483-8f1c-5d5679927def" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:28,408]\u001b[0m A new study created in memory with name: no-name-cb8d0eec-258c-4cb6-9f89-ffd9e01eca92\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:28,527]\u001b[0m Trial 0 finished with value: 198943.67897469082 and parameters: {'n_estimators': 1400, 'learning_rate': 0.0002969536549477393, 'max_depth': 13}. Best is trial 0 with value: 198943.67897469082.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:28,570]\u001b[0m Trial 1 finished with value: 87823.91199760552 and parameters: {'n_estimators': 1200, 'learning_rate': 0.09138823223413792, 'max_depth': 4}. Best is trial 1 with value: 87823.91199760552.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:28] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:28] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:28] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:28,684]\u001b[0m Trial 2 finished with value: 177231.76870751628 and parameters: {'n_estimators': 1200, 'learning_rate': 0.01259678878419975, 'max_depth': 8}. Best is trial 1 with value: 87823.91199760552.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:28,739]\u001b[0m Trial 3 finished with value: 42147.24927997999 and parameters: {'n_estimators': 800, 'learning_rate': 0.24046670912332685, 'max_depth': 4}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:28] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:28] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:29,973]\u001b[0m Trial 4 finished with value: 198493.0708843229 and parameters: {'n_estimators': 1200, 'learning_rate': 0.0005410500825128317, 'max_depth': 3}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:30] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:30,663]\u001b[0m Trial 5 finished with value: 49559.493249812585 and parameters: {'n_estimators': 1200, 'learning_rate': 0.18210251533385016, 'max_depth': 6}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:30] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:32,019]\u001b[0m Trial 6 finished with value: 198879.7879462171 and parameters: {'n_estimators': 1800, 'learning_rate': 0.00033101350644419584, 'max_depth': 13}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,072]\u001b[0m Trial 7 finished with value: 185630.34572294302 and parameters: {'n_estimators': 1800, 'learning_rate': 0.007656543333687949, 'max_depth': 5}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,100]\u001b[0m Trial 8 finished with value: 138217.74848183122 and parameters: {'n_estimators': 800, 'learning_rate': 0.03911088640019661, 'max_depth': 11}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,133]\u001b[0m Trial 9 finished with value: 56500.93051100445 and parameters: {'n_estimators': 1200, 'learning_rate': 0.1607446226455004, 'max_depth': 14}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,179]\u001b[0m Trial 10 finished with value: 196252.2173120141 and parameters: {'n_estimators': 100, 'learning_rate': 0.001741510829505106, 'max_depth': 8}. Best is trial 3 with value: 42147.24927997999.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,219]\u001b[0m Trial 11 finished with value: 39964.9690722631 and parameters: {'n_estimators': 600, 'learning_rate': 0.2963639040286593, 'max_depth': 6}. Best is trial 11 with value: 39964.9690722631.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:32,271]\u001b[0m Trial 12 finished with value: 39080.890279334846 and parameters: {'n_estimators': 600, 'learning_rate': 0.2924325870565413, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,315]\u001b[0m Trial 13 finished with value: 124981.45939804337 and parameters: {'n_estimators': 300, 'learning_rate': 0.05014108192467709, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,379]\u001b[0m Trial 14 finished with value: 40647.64471933146 and parameters: {'n_estimators': 600, 'learning_rate': 0.27073421663111485, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,418]\u001b[0m Trial 15 finished with value: 154783.81009606415 and parameters: {'n_estimators': 500, 'learning_rate': 0.02695342119948647, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:32,465]\u001b[0m Trial 16 finished with value: 88593.48551046038 and parameters: {'n_estimators': 800, 'learning_rate': 0.0897273673630594, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,507]\u001b[0m Trial 17 finished with value: 163495.25839386645 and parameters: {'n_estimators': 400, 'learning_rate': 0.021134138561122097, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,543]\u001b[0m Trial 18 finished with value: 193444.76088433893 and parameters: {'n_estimators': 200, 'learning_rate': 0.003289646897805105, 'max_depth': 3}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,581]\u001b[0m Trial 19 finished with value: 95467.86785435419 and parameters: {'n_estimators': 600, 'learning_rate': 0.08100347365643226, 'max_depth': 5}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,633]\u001b[0m Trial 20 finished with value: 39341.808840741745 and parameters: {'n_estimators': 900, 'learning_rate': 0.2890646117439157, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:32,700]\u001b[0m Trial 21 finished with value: 64892.96451367521 and parameters: {'n_estimators': 900, 'learning_rate': 0.1321420817394568, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,756]\u001b[0m Trial 22 finished with value: 39919.5408794358 and parameters: {'n_estimators': 1000, 'learning_rate': 0.29521950555952836, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,800]\u001b[0m Trial 23 finished with value: 115547.2678866634 and parameters: {'n_estimators': 1000, 'learning_rate': 0.058728722298502095, 'max_depth': 12}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,848]\u001b[0m Trial 24 finished with value: 67960.41607408407 and parameters: {'n_estimators': 1600, 'learning_rate': 0.12444622149728175, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:32,917]\u001b[0m Trial 25 finished with value: 43430.380632926775 and parameters: {'n_estimators': 1000, 'learning_rate': 0.2781729171316346, 'max_depth': 15}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:32,965]\u001b[0m Trial 26 finished with value: 121996.83901761193 and parameters: {'n_estimators': 1500, 'learning_rate': 0.0526641017076236, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,014]\u001b[0m Trial 27 finished with value: 61219.73793105805 and parameters: {'n_estimators': 700, 'learning_rate': 0.14090389484291524, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,057]\u001b[0m Trial 28 finished with value: 149726.3802269489 and parameters: {'n_estimators': 400, 'learning_rate': 0.03058627767968753, 'max_depth': 12}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,106]\u001b[0m Trial 29 finished with value: 86456.16858119742 and parameters: {'n_estimators': 1400, 'learning_rate': 0.09258860287609523, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:32] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:33,159]\u001b[0m Trial 30 finished with value: 54274.71256708668 and parameters: {'n_estimators': 2000, 'learning_rate': 0.16460632531808025, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,208]\u001b[0m Trial 31 finished with value: 41039.826367942645 and parameters: {'n_estimators': 600, 'learning_rate': 0.2531591453647617, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,263]\u001b[0m Trial 32 finished with value: 42486.20400760423 and parameters: {'n_estimators': 900, 'learning_rate': 0.2372859852477389, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,303]\u001b[0m Trial 33 finished with value: 95962.84480675156 and parameters: {'n_estimators': 1100, 'learning_rate': 0.08028301419096882, 'max_depth': 5}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,348]\u001b[0m Trial 34 finished with value: 67039.28448082336 and parameters: {'n_estimators': 900, 'learning_rate': 0.12522375300593075, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:33,403]\u001b[0m Trial 35 finished with value: 39907.27072015415 and parameters: {'n_estimators': 700, 'learning_rate': 0.24725978757199804, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,461]\u001b[0m Trial 36 finished with value: 50916.22828762896 and parameters: {'n_estimators': 700, 'learning_rate': 0.181933323966489, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,505]\u001b[0m Trial 37 finished with value: 172977.0187411539 and parameters: {'n_estimators': 1300, 'learning_rate': 0.015175344549002946, 'max_depth': 13}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,551]\u001b[0m Trial 38 finished with value: 105428.53924610029 and parameters: {'n_estimators': 1100, 'learning_rate': 0.0692652361532205, 'max_depth': 12}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,598]\u001b[0m Trial 39 finished with value: 49028.207638503605 and parameters: {'n_estimators': 700, 'learning_rate': 0.1907546562789119, 'max_depth': 4}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:33,654]\u001b[0m Trial 40 finished with value: 73624.00487657385 and parameters: {'n_estimators': 400, 'learning_rate': 0.11227136968954649, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,704]\u001b[0m Trial 41 finished with value: 39494.06679348176 and parameters: {'n_estimators': 500, 'learning_rate': 0.281847659231474, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,765]\u001b[0m Trial 42 finished with value: 48694.76886515337 and parameters: {'n_estimators': 500, 'learning_rate': 0.19537469360141685, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,822]\u001b[0m Trial 43 finished with value: 41540.73907240643 and parameters: {'n_estimators': 900, 'learning_rate': 0.28974323644544114, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,874]\u001b[0m Trial 44 finished with value: 49174.76346723035 and parameters: {'n_estimators': 800, 'learning_rate': 0.19132885928328566, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:33,926]\u001b[0m Trial 45 finished with value: 71317.6229241771 and parameters: {'n_estimators': 500, 'learning_rate': 0.11748874875785861, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:33,980]\u001b[0m Trial 46 finished with value: 41837.484157493025 and parameters: {'n_estimators': 300, 'learning_rate': 0.2984741515727143, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,026]\u001b[0m Trial 47 finished with value: 134882.30540004894 and parameters: {'n_estimators': 700, 'learning_rate': 0.041760362479718066, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,069]\u001b[0m Trial 48 finished with value: 50214.062413404 and parameters: {'n_estimators': 1000, 'learning_rate': 0.1782669517290495, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:33] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:34,121]\u001b[0m Trial 49 finished with value: 109708.74121365364 and parameters: {'n_estimators': 200, 'learning_rate': 0.06509861284586331, 'max_depth': 4}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,169]\u001b[0m Trial 50 finished with value: 83247.89225930415 and parameters: {'n_estimators': 1100, 'learning_rate': 0.09723478858875335, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,209]\u001b[0m Trial 51 finished with value: 40521.00520293694 and parameters: {'n_estimators': 600, 'learning_rate': 0.2876915817061607, 'max_depth': 5}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,254]\u001b[0m Trial 52 finished with value: 44249.267508307355 and parameters: {'n_estimators': 800, 'learning_rate': 0.21675361321337694, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,300]\u001b[0m Trial 53 finished with value: 57522.67092444571 and parameters: {'n_estimators': 500, 'learning_rate': 0.15457379507334276, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,342]\u001b[0m Trial 54 finished with value: 45182.419726172215 and parameters: {'n_estimators': 600, 'learning_rate': 0.21580957516345922, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:34,393]\u001b[0m Trial 55 finished with value: 79438.83647667873 and parameters: {'n_estimators': 800, 'learning_rate': 0.10282962553184158, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,440]\u001b[0m Trial 56 finished with value: 59984.13124101304 and parameters: {'n_estimators': 700, 'learning_rate': 0.1438544889477077, 'max_depth': 5}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,500]\u001b[0m Trial 57 finished with value: 39840.47019026054 and parameters: {'n_estimators': 300, 'learning_rate': 0.2941008466848309, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,552]\u001b[0m Trial 58 finished with value: 42886.483879145475 and parameters: {'n_estimators': 300, 'learning_rate': 0.22812814020884148, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:34,610]\u001b[0m Trial 59 finished with value: 59178.495417870705 and parameters: {'n_estimators': 100, 'learning_rate': 0.148940179234625, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,665]\u001b[0m Trial 60 finished with value: 39328.648203813704 and parameters: {'n_estimators': 200, 'learning_rate': 0.2956894994347374, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,723]\u001b[0m Trial 61 finished with value: 39583.09714604055 and parameters: {'n_estimators': 200, 'learning_rate': 0.29385023979462443, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:34,789]\u001b[0m Trial 62 finished with value: 45477.447492611354 and parameters: {'n_estimators': 200, 'learning_rate': 0.215065047000271, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,846]\u001b[0m Trial 63 finished with value: 54772.90137452703 and parameters: {'n_estimators': 400, 'learning_rate': 0.16370854159821618, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,897]\u001b[0m Trial 64 finished with value: 42271.45285809915 and parameters: {'n_estimators': 200, 'learning_rate': 0.2318998798575922, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,944]\u001b[0m Trial 65 finished with value: 101330.0572582894 and parameters: {'n_estimators': 100, 'learning_rate': 0.07366228537813713, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:34,989]\u001b[0m Trial 66 finished with value: 74660.68042223246 and parameters: {'n_estimators': 300, 'learning_rate': 0.11032732102699375, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:34] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:35,052]\u001b[0m Trial 67 finished with value: 40879.799006400695 and parameters: {'n_estimators': 400, 'learning_rate': 0.2880702629170375, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,103]\u001b[0m Trial 68 finished with value: 61235.61099207634 and parameters: {'n_estimators': 200, 'learning_rate': 0.14429665218993984, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,162]\u001b[0m Trial 69 finished with value: 44808.91293288233 and parameters: {'n_estimators': 300, 'learning_rate': 0.2204583559103831, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,208]\u001b[0m Trial 70 finished with value: 86915.73526588223 and parameters: {'n_estimators': 500, 'learning_rate': 0.09200233326508195, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:35,273]\u001b[0m Trial 71 finished with value: 40439.40798132122 and parameters: {'n_estimators': 100, 'learning_rate': 0.28776693376031565, 'max_depth': 12}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,334]\u001b[0m Trial 72 finished with value: 51290.664950282844 and parameters: {'n_estimators': 300, 'learning_rate': 0.17986076090825026, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,392]\u001b[0m Trial 73 finished with value: 42015.60790350888 and parameters: {'n_estimators': 400, 'learning_rate': 0.23313981952697407, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,440]\u001b[0m Trial 74 finished with value: 66151.14380308305 and parameters: {'n_estimators': 1000, 'learning_rate': 0.12967547098381196, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:35,506]\u001b[0m Trial 75 finished with value: 41197.482114896244 and parameters: {'n_estimators': 1200, 'learning_rate': 0.24949919668650344, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,557]\u001b[0m Trial 76 finished with value: 51868.146515381 and parameters: {'n_estimators': 500, 'learning_rate': 0.17449136214118455, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,618]\u001b[0m Trial 77 finished with value: 41200.60769848813 and parameters: {'n_estimators': 800, 'learning_rate': 0.29170163207126615, 'max_depth': 12}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,669]\u001b[0m Trial 78 finished with value: 67029.459760648 and parameters: {'n_estimators': 900, 'learning_rate': 0.12770471548477152, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:35,726]\u001b[0m Trial 79 finished with value: 50337.77620083129 and parameters: {'n_estimators': 700, 'learning_rate': 0.18893376757649322, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,805]\u001b[0m Trial 80 finished with value: 42066.23758512917 and parameters: {'n_estimators': 1300, 'learning_rate': 0.24409361876912325, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,850]\u001b[0m Trial 81 finished with value: 55948.69650244657 and parameters: {'n_estimators': 600, 'learning_rate': 0.1616163711303803, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,891]\u001b[0m Trial 82 finished with value: 41268.02810813567 and parameters: {'n_estimators': 600, 'learning_rate': 0.24297717806039892, 'max_depth': 5}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:35,948]\u001b[0m Trial 83 finished with value: 39449.53913077416 and parameters: {'n_estimators': 200, 'learning_rate': 0.290323157653214, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:35,994]\u001b[0m Trial 84 finished with value: 41093.1468671608 and parameters: {'n_estimators': 100, 'learning_rate': 0.2923085754662649, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,069]\u001b[0m Trial 85 finished with value: 45544.99145637636 and parameters: {'n_estimators': 200, 'learning_rate': 0.20972978985430676, 'max_depth': 11}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:35] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:36,146]\u001b[0m Trial 86 finished with value: 70947.62280909791 and parameters: {'n_estimators': 200, 'learning_rate': 0.11831126459699517, 'max_depth': 13}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,191]\u001b[0m Trial 87 finished with value: 46791.47407023258 and parameters: {'n_estimators': 300, 'learning_rate': 0.20087377907771276, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,233]\u001b[0m Trial 88 finished with value: 89407.51350614139 and parameters: {'n_estimators': 400, 'learning_rate': 0.08915334208438767, 'max_depth': 4}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,286]\u001b[0m Trial 89 finished with value: 41999.23363126114 and parameters: {'n_estimators': 100, 'learning_rate': 0.2990791489881827, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,336]\u001b[0m Trial 90 finished with value: 58484.55236994875 and parameters: {'n_estimators': 1000, 'learning_rate': 0.15240164166111247, 'max_depth': 10}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:36,389]\u001b[0m Trial 91 finished with value: 42045.07679976165 and parameters: {'n_estimators': 600, 'learning_rate': 0.2354165038737716, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,438]\u001b[0m Trial 92 finished with value: 50335.27098300319 and parameters: {'n_estimators': 500, 'learning_rate': 0.18158656033741288, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,483]\u001b[0m Trial 93 finished with value: 39489.34948682898 and parameters: {'n_estimators': 700, 'learning_rate': 0.25631141652595696, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,536]\u001b[0m Trial 94 finished with value: 40905.51536555017 and parameters: {'n_estimators': 700, 'learning_rate': 0.25253359453403723, 'max_depth': 5}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,585]\u001b[0m Trial 95 finished with value: 47380.07707641544 and parameters: {'n_estimators': 200, 'learning_rate': 0.19867923394525722, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:36,643]\u001b[0m Trial 96 finished with value: 54149.26469321809 and parameters: {'n_estimators': 800, 'learning_rate': 0.16270131863304085, 'max_depth': 8}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,697]\u001b[0m Trial 97 finished with value: 63309.79632797573 and parameters: {'n_estimators': 900, 'learning_rate': 0.1349367071542065, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,761]\u001b[0m Trial 98 finished with value: 40188.801397585616 and parameters: {'n_estimators': 1100, 'learning_rate': 0.24741233763952436, 'max_depth': 9}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,823]\u001b[0m Trial 99 finished with value: 46699.911221207854 and parameters: {'n_estimators': 300, 'learning_rate': 0.20149202714432052, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:36,890]\u001b[0m Trial 100 finished with value: 41089.94850353121 and parameters: {'n_estimators': 400, 'learning_rate': 0.25041970994073787, 'max_depth': 14}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,941]\u001b[0m Trial 101 finished with value: 40948.16804867185 and parameters: {'n_estimators': 700, 'learning_rate': 0.2991379487121858, 'max_depth': 6}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:36,988]\u001b[0m Trial 102 finished with value: 46807.170489973876 and parameters: {'n_estimators': 600, 'learning_rate': 0.20664949458701748, 'max_depth': 7}. Best is trial 12 with value: 39080.890279334846.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,033]\u001b[0m Trial 103 finished with value: 38820.55017191217 and parameters: {'n_estimators': 700, 'learning_rate': 0.25902108628804354, 'max_depth': 6}. Best is trial 103 with value: 38820.55017191217.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,088]\u001b[0m Trial 104 finished with value: 53632.07956906222 and parameters: {'n_estimators': 800, 'learning_rate': 0.1659963086791974, 'max_depth': 6}. Best is trial 103 with value: 38820.55017191217.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:36] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:37,139]\u001b[0m Trial 105 finished with value: 39944.70388645487 and parameters: {'n_estimators': 900, 'learning_rate': 0.2504691317857929, 'max_depth': 5}. Best is trial 103 with value: 38820.55017191217.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,192]\u001b[0m Trial 106 finished with value: 78799.53475960283 and parameters: {'n_estimators': 500, 'learning_rate': 0.10375919889469944, 'max_depth': 10}. Best is trial 103 with value: 38820.55017191217.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,238]\u001b[0m Trial 107 finished with value: 60879.33062385189 and parameters: {'n_estimators': 700, 'learning_rate': 0.1410765120333037, 'max_depth': 7}. Best is trial 103 with value: 38820.55017191217.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,290]\u001b[0m Trial 108 finished with value: 38496.604981305536 and parameters: {'n_estimators': 800, 'learning_rate': 0.26427467675051897, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,331]\u001b[0m Trial 109 finished with value: 39983.09612386753 and parameters: {'n_estimators': 700, 'learning_rate': 0.25881147201517196, 'max_depth': 4}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:37,380]\u001b[0m Trial 110 finished with value: 49054.85198752612 and parameters: {'n_estimators': 800, 'learning_rate': 0.18729571322791028, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,426]\u001b[0m Trial 111 finished with value: 44615.09407498007 and parameters: {'n_estimators': 1000, 'learning_rate': 0.21197843737832905, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,474]\u001b[0m Trial 112 finished with value: 40702.79238445114 and parameters: {'n_estimators': 900, 'learning_rate': 0.2992295299752574, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,522]\u001b[0m Trial 113 finished with value: 38961.44587197785 and parameters: {'n_estimators': 700, 'learning_rate': 0.2583156408207672, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,573]\u001b[0m Trial 114 finished with value: 40152.557082183324 and parameters: {'n_estimators': 700, 'learning_rate': 0.255308873515212, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:37,633]\u001b[0m Trial 115 finished with value: 52090.72885848795 and parameters: {'n_estimators': 600, 'learning_rate': 0.16861318037336856, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,679]\u001b[0m Trial 116 finished with value: 44490.242064242215 and parameters: {'n_estimators': 800, 'learning_rate': 0.21965195572434007, 'max_depth': 3}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,729]\u001b[0m Trial 117 finished with value: 66050.31280348562 and parameters: {'n_estimators': 500, 'learning_rate': 0.12670494112802247, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,787]\u001b[0m Trial 118 finished with value: 59998.66798682677 and parameters: {'n_estimators': 200, 'learning_rate': 0.14663514289134094, 'max_depth': 7}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:37,860]\u001b[0m Trial 119 finished with value: 40169.32538594041 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2617110175615475, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,928]\u001b[0m Trial 120 finished with value: 50357.47042007403 and parameters: {'n_estimators': 800, 'learning_rate': 0.17872308853983848, 'max_depth': 8}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:37,987]\u001b[0m Trial 121 finished with value: 45482.25235330388 and parameters: {'n_estimators': 900, 'learning_rate': 0.21891692533434756, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:37] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:38,036]\u001b[0m Trial 122 finished with value: 40710.405508980875 and parameters: {'n_estimators': 700, 'learning_rate': 0.29782604210410213, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,096]\u001b[0m Trial 123 finished with value: 39361.341451586086 and parameters: {'n_estimators': 100, 'learning_rate': 0.2636995746810408, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,149]\u001b[0m Trial 124 finished with value: 43330.60465555111 and parameters: {'n_estimators': 100, 'learning_rate': 0.2250666980944701, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,201]\u001b[0m Trial 125 finished with value: 39107.54256887916 and parameters: {'n_estimators': 200, 'learning_rate': 0.2608397410411993, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,257]\u001b[0m Trial 126 finished with value: 48913.30108776771 and parameters: {'n_estimators': 200, 'learning_rate': 0.1912767233163055, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:38,311]\u001b[0m Trial 127 finished with value: 73097.06808127328 and parameters: {'n_estimators': 300, 'learning_rate': 0.11320119073065979, 'max_depth': 8}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,359]\u001b[0m Trial 128 finished with value: 39446.16202041043 and parameters: {'n_estimators': 100, 'learning_rate': 0.2539380999090154, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,412]\u001b[0m Trial 129 finished with value: 58101.81241862241 and parameters: {'n_estimators': 100, 'learning_rate': 0.15219367021745975, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,460]\u001b[0m Trial 130 finished with value: 41318.480487682486 and parameters: {'n_estimators': 100, 'learning_rate': 0.24832002154669672, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:38,512]\u001b[0m Trial 131 finished with value: 42498.72807074778 and parameters: {'n_estimators': 200, 'learning_rate': 0.29716898235201616, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,572]\u001b[0m Trial 132 finished with value: 44876.034176107925 and parameters: {'n_estimators': 100, 'learning_rate': 0.21506567054574732, 'max_depth': 7}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,619]\u001b[0m Trial 133 finished with value: 40352.70381374221 and parameters: {'n_estimators': 200, 'learning_rate': 0.2601730672863565, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,668]\u001b[0m Trial 134 finished with value: 49620.43438794623 and parameters: {'n_estimators': 300, 'learning_rate': 0.18368827074968483, 'max_depth': 7}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:38,729]\u001b[0m Trial 135 finished with value: 42710.57785988656 and parameters: {'n_estimators': 100, 'learning_rate': 0.2993731397569816, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,782]\u001b[0m Trial 136 finished with value: 43791.60600941583 and parameters: {'n_estimators': 1700, 'learning_rate': 0.22565967331472303, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,838]\u001b[0m Trial 137 finished with value: 185050.76231311724 and parameters: {'n_estimators': 200, 'learning_rate': 0.007983483202576044, 'max_depth': 8}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:38,894]\u001b[0m Trial 138 finished with value: 53176.69365645314 and parameters: {'n_estimators': 300, 'learning_rate': 0.17051705126151057, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:38,962]\u001b[0m Trial 139 finished with value: 38849.409761372764 and parameters: {'n_estimators': 100, 'learning_rate': 0.2546634597534966, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,007]\u001b[0m Trial 140 finished with value: 47574.976148383445 and parameters: {'n_estimators': 100, 'learning_rate': 0.19982648363245997, 'max_depth': 4}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,063]\u001b[0m Trial 141 finished with value: 38963.934840236194 and parameters: {'n_estimators': 200, 'learning_rate': 0.2586018260074203, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,126]\u001b[0m Trial 142 finished with value: 39951.55902432996 and parameters: {'n_estimators': 200, 'learning_rate': 0.2512014357843843, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:38] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:39,186]\u001b[0m Trial 143 finished with value: 39201.88497040135 and parameters: {'n_estimators': 100, 'learning_rate': 0.26051336144258097, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,243]\u001b[0m Trial 144 finished with value: 45260.187814814766 and parameters: {'n_estimators': 100, 'learning_rate': 0.21047265904744183, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,300]\u001b[0m Trial 145 finished with value: 160248.13264697525 and parameters: {'n_estimators': 100, 'learning_rate': 0.023302408230722584, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,351]\u001b[0m Trial 146 finished with value: 124790.55101633571 and parameters: {'n_estimators': 200, 'learning_rate': 0.05033663140379654, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:39,412]\u001b[0m Trial 147 finished with value: 39041.248817038206 and parameters: {'n_estimators': 100, 'learning_rate': 0.2574329068799658, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,470]\u001b[0m Trial 148 finished with value: 56807.07039397066 and parameters: {'n_estimators': 100, 'learning_rate': 0.15962563635943375, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,528]\u001b[0m Trial 149 finished with value: 39798.59766112854 and parameters: {'n_estimators': 100, 'learning_rate': 0.24988915856517532, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:39,599]\u001b[0m Trial 150 finished with value: 63232.51063953214 and parameters: {'n_estimators': 100, 'learning_rate': 0.13514635436305458, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,658]\u001b[0m Trial 151 finished with value: 40244.41841480396 and parameters: {'n_estimators': 200, 'learning_rate': 0.26141305966762857, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,712]\u001b[0m Trial 152 finished with value: 47794.81749735232 and parameters: {'n_estimators': 100, 'learning_rate': 0.19631573952379003, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,775]\u001b[0m Trial 153 finished with value: 43491.334927996046 and parameters: {'n_estimators': 200, 'learning_rate': 0.2289138374183629, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,826]\u001b[0m Trial 154 finished with value: 41995.50779461595 and parameters: {'n_estimators': 100, 'learning_rate': 0.299229568221207, 'max_depth': 8}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:39,872]\u001b[0m Trial 155 finished with value: 50662.439025441614 and parameters: {'n_estimators': 200, 'learning_rate': 0.18066330746294806, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,946]\u001b[0m Trial 156 finished with value: 41321.95467400611 and parameters: {'n_estimators': 600, 'learning_rate': 0.2482674957416437, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:39,995]\u001b[0m Trial 157 finished with value: 146140.70007026166 and parameters: {'n_estimators': 800, 'learning_rate': 0.03321981375765517, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,047]\u001b[0m Trial 158 finished with value: 45697.98733726409 and parameters: {'n_estimators': 300, 'learning_rate': 0.214165414973786, 'max_depth': 8}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:39] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:40,099]\u001b[0m Trial 159 finished with value: 40411.45057269907 and parameters: {'n_estimators': 700, 'learning_rate': 0.25873110675080185, 'max_depth': 5}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,153]\u001b[0m Trial 160 finished with value: 109839.91320373303 and parameters: {'n_estimators': 200, 'learning_rate': 0.0644121439784623, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,212]\u001b[0m Trial 161 finished with value: 39936.91495291141 and parameters: {'n_estimators': 100, 'learning_rate': 0.2665024287570348, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,277]\u001b[0m Trial 162 finished with value: 44796.19768964945 and parameters: {'n_estimators': 200, 'learning_rate': 0.22193362712388148, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:40,339]\u001b[0m Trial 163 finished with value: 50789.752963937244 and parameters: {'n_estimators': 600, 'learning_rate': 0.1843173154363475, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,394]\u001b[0m Trial 164 finished with value: 40009.810582894876 and parameters: {'n_estimators': 200, 'learning_rate': 0.2904432402855049, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,466]\u001b[0m Trial 165 finished with value: 43220.21487826459 and parameters: {'n_estimators': 100, 'learning_rate': 0.2992402217744419, 'max_depth': 11}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:40,530]\u001b[0m Trial 166 finished with value: 43706.985521430164 and parameters: {'n_estimators': 300, 'learning_rate': 0.225196961558913, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,593]\u001b[0m Trial 167 finished with value: 57170.78078456128 and parameters: {'n_estimators': 700, 'learning_rate': 0.15540764612633345, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,664]\u001b[0m Trial 168 finished with value: 47821.2646593011 and parameters: {'n_estimators': 200, 'learning_rate': 0.19614895334524932, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,722]\u001b[0m Trial 169 finished with value: 40832.41301691631 and parameters: {'n_estimators': 100, 'learning_rate': 0.2498802345335422, 'max_depth': 7}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:40,791]\u001b[0m Trial 170 finished with value: 54881.15627423422 and parameters: {'n_estimators': 800, 'learning_rate': 0.16781697622454084, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,848]\u001b[0m Trial 171 finished with value: 38654.196575147944 and parameters: {'n_estimators': 100, 'learning_rate': 0.2548420842192987, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,902]\u001b[0m Trial 172 finished with value: 39917.70946648478 and parameters: {'n_estimators': 100, 'learning_rate': 0.25171793613926813, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:40,972]\u001b[0m Trial 173 finished with value: 44955.91551663381 and parameters: {'n_estimators': 200, 'learning_rate': 0.21188820635933964, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:40] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:41,042]\u001b[0m Trial 174 finished with value: 39107.79337454158 and parameters: {'n_estimators': 100, 'learning_rate': 0.26452651102449926, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,096]\u001b[0m Trial 175 finished with value: 41999.362530512924 and parameters: {'n_estimators': 100, 'learning_rate': 0.29907469677636017, 'max_depth': 8}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,150]\u001b[0m Trial 176 finished with value: 43250.84945675358 and parameters: {'n_estimators': 100, 'learning_rate': 0.22718027567611263, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,214]\u001b[0m Trial 177 finished with value: 47427.28057458764 and parameters: {'n_estimators': 100, 'learning_rate': 0.19166878441279575, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,268]\u001b[0m Trial 178 finished with value: 195035.42472705356 and parameters: {'n_estimators': 600, 'learning_rate': 0.0024020005372535815, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:41,327]\u001b[0m Trial 179 finished with value: 197669.55893189146 and parameters: {'n_estimators': 100, 'learning_rate': 0.0009783752254714651, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,389]\u001b[0m Trial 180 finished with value: 130727.14362129995 and parameters: {'n_estimators': 700, 'learning_rate': 0.04516597276366771, 'max_depth': 6}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,449]\u001b[0m Trial 181 finished with value: 39622.21698206594 and parameters: {'n_estimators': 200, 'learning_rate': 0.2583464365952619, 'max_depth': 10}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:41,524]\u001b[0m Trial 182 finished with value: 39110.03575957275 and parameters: {'n_estimators': 200, 'learning_rate': 0.26079916428457955, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,575]\u001b[0m Trial 183 finished with value: 175708.82226014294 and parameters: {'n_estimators': 100, 'learning_rate': 0.013518206665748668, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,635]\u001b[0m Trial 184 finished with value: 39055.51972786577 and parameters: {'n_estimators': 200, 'learning_rate': 0.25722825504286667, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,697]\u001b[0m Trial 185 finished with value: 41770.15631828906 and parameters: {'n_estimators': 200, 'learning_rate': 0.2349308945979238, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,751]\u001b[0m Trial 186 finished with value: 96168.92148251449 and parameters: {'n_estimators': 300, 'learning_rate': 0.0794520959884378, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:41,810]\u001b[0m Trial 187 finished with value: 46982.789327190505 and parameters: {'n_estimators': 200, 'learning_rate': 0.2051186439598286, 'max_depth': 8}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,871]\u001b[0m Trial 188 finished with value: 38600.41415655861 and parameters: {'n_estimators': 100, 'learning_rate': 0.262725738665155, 'max_depth': 9}. Best is trial 108 with value: 38496.604981305536.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:41,929]\u001b[0m Trial 189 finished with value: 37633.06408026974 and parameters: {'n_estimators': 100, 'learning_rate': 0.2631629457241946, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:41] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:42,008]\u001b[0m Trial 190 finished with value: 51680.92622670183 and parameters: {'n_estimators': 100, 'learning_rate': 0.17056613634639728, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:42,088]\u001b[0m Trial 191 finished with value: 42428.02346623968 and parameters: {'n_estimators': 100, 'learning_rate': 0.29833162057257323, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:42,158]\u001b[0m Trial 192 finished with value: 41082.813026031145 and parameters: {'n_estimators': 100, 'learning_rate': 0.2561869484643119, 'max_depth': 3}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:42] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:42] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:42] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:42,283]\u001b[0m Trial 193 finished with value: 44626.14554335176 and parameters: {'n_estimators': 200, 'learning_rate': 0.22317092069648276, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:42] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:42,929]\u001b[0m Trial 194 finished with value: 39104.4757535831 and parameters: {'n_estimators': 100, 'learning_rate': 0.2610167263894733, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:43] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:43,572]\u001b[0m Trial 195 finished with value: 169247.0194223342 and parameters: {'n_estimators': 100, 'learning_rate': 0.017506151373163463, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:43] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:45,294]\u001b[0m Trial 196 finished with value: 45918.080856215245 and parameters: {'n_estimators': 100, 'learning_rate': 0.199783016379459, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:45,534]\u001b[0m Trial 197 finished with value: 143110.95495500235 and parameters: {'n_estimators': 100, 'learning_rate': 0.03532553590632379, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:45] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:45,686]\u001b[0m Trial 198 finished with value: 38911.570003784414 and parameters: {'n_estimators': 200, 'learning_rate': 0.25797346767030205, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:45,744]\u001b[0m Trial 199 finished with value: 41975.028954257694 and parameters: {'n_estimators': 200, 'learning_rate': 0.23274684993741065, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:45,797]\u001b[0m Trial 200 finished with value: 61677.053304489615 and parameters: {'n_estimators': 300, 'learning_rate': 0.1432845139440841, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:45] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:45] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:45] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:45,859]\u001b[0m Trial 201 finished with value: 39500.70715118098 and parameters: {'n_estimators': 100, 'learning_rate': 0.25869017673738803, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:45,924]\u001b[0m Trial 202 finished with value: 38797.15352394253 and parameters: {'n_estimators': 200, 'learning_rate': 0.2659984898467621, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:45,981]\u001b[0m Trial 203 finished with value: 39469.43973586086 and parameters: {'n_estimators': 200, 'learning_rate': 0.2674340166164901, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:45] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:45] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:45] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:46,045]\u001b[0m Trial 204 finished with value: 41994.26429496072 and parameters: {'n_estimators': 200, 'learning_rate': 0.2992741124705862, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,107]\u001b[0m Trial 205 finished with value: 43943.77243451573 and parameters: {'n_estimators': 300, 'learning_rate': 0.21319091547299837, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,167]\u001b[0m Trial 206 finished with value: 157280.55186731883 and parameters: {'n_estimators': 200, 'learning_rate': 0.025330770077878286, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,236]\u001b[0m Trial 207 finished with value: 51141.84979391918 and parameters: {'n_estimators': 200, 'learning_rate': 0.1859509231766958, 'max_depth': 10}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:46,302]\u001b[0m Trial 208 finished with value: 43254.61516324554 and parameters: {'n_estimators': 100, 'learning_rate': 0.2271461150759613, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,364]\u001b[0m Trial 209 finished with value: 40068.76186541486 and parameters: {'n_estimators': 100, 'learning_rate': 0.26152928404395925, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,434]\u001b[0m Trial 210 finished with value: 42694.54578328854 and parameters: {'n_estimators': 200, 'learning_rate': 0.2993924911855828, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,495]\u001b[0m Trial 211 finished with value: 40651.1041312931 and parameters: {'n_estimators': 100, 'learning_rate': 0.24050264446002367, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:46,557]\u001b[0m Trial 212 finished with value: 114449.5067957649 and parameters: {'n_estimators': 100, 'learning_rate': 0.05992908224349568, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,613]\u001b[0m Trial 213 finished with value: 191368.41891076136 and parameters: {'n_estimators': 100, 'learning_rate': 0.004416477626596088, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,663]\u001b[0m Trial 214 finished with value: 199135.94223034175 and parameters: {'n_estimators': 200, 'learning_rate': 0.0001945255839989158, 'max_depth': 10}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,723]\u001b[0m Trial 215 finished with value: 39220.97948821273 and parameters: {'n_estimators': 1900, 'learning_rate': 0.25717857428671, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,788]\u001b[0m Trial 216 finished with value: 47068.2402641389 and parameters: {'n_estimators': 1500, 'learning_rate': 0.20351461826061426, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:46,857]\u001b[0m Trial 217 finished with value: 43467.727051890564 and parameters: {'n_estimators': 1300, 'learning_rate': 0.22995060219647812, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,919]\u001b[0m Trial 218 finished with value: 39072.83751697544 and parameters: {'n_estimators': 1200, 'learning_rate': 0.2621102151800624, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:46,978]\u001b[0m Trial 219 finished with value: 50799.77789299215 and parameters: {'n_estimators': 1200, 'learning_rate': 0.18718796662972964, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:46] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:47,034]\u001b[0m Trial 220 finished with value: 184650.8378732131 and parameters: {'n_estimators': 1000, 'learning_rate': 0.00822315284436165, 'max_depth': 8}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,101]\u001b[0m Trial 221 finished with value: 39078.853029116515 and parameters: {'n_estimators': 1800, 'learning_rate': 0.2620077076797459, 'max_depth': 9}. Best is trial 189 with value: 37633.06408026974.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,189]\u001b[0m Trial 222 finished with value: 37591.26290793679 and parameters: {'n_estimators': 1900, 'learning_rate': 0.26335499333391776, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,249]\u001b[0m Trial 223 finished with value: 39097.427514998046 and parameters: {'n_estimators': 1800, 'learning_rate': 0.264703153599739, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:47,315]\u001b[0m Trial 224 finished with value: 40518.84431244421 and parameters: {'n_estimators': 1800, 'learning_rate': 0.25212193453372905, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,374]\u001b[0m Trial 225 finished with value: 42713.79830996325 and parameters: {'n_estimators': 1700, 'learning_rate': 0.29969486786918964, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,439]\u001b[0m Trial 226 finished with value: 45300.360441163386 and parameters: {'n_estimators': 2000, 'learning_rate': 0.21618968328127006, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:47,514]\u001b[0m Trial 227 finished with value: 39148.89431728849 and parameters: {'n_estimators': 1900, 'learning_rate': 0.25607370423073067, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,574]\u001b[0m Trial 228 finished with value: 51991.940908169796 and parameters: {'n_estimators': 1800, 'learning_rate': 0.16982996643183654, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,638]\u001b[0m Trial 229 finished with value: 44869.53590628439 and parameters: {'n_estimators': 1800, 'learning_rate': 0.2178817136156727, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,709]\u001b[0m Trial 230 finished with value: 39303.13479622807 and parameters: {'n_estimators': 1900, 'learning_rate': 0.2596752109814831, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:47,774]\u001b[0m Trial 231 finished with value: 150919.59791840232 and parameters: {'n_estimators': 1900, 'learning_rate': 0.02977538474439465, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,849]\u001b[0m Trial 232 finished with value: 38577.01437420992 and parameters: {'n_estimators': 1900, 'learning_rate': 0.2537041754776736, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,911]\u001b[0m Trial 233 finished with value: 42514.207802890596 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2275605775533244, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:47,970]\u001b[0m Trial 234 finished with value: 42172.1514974547 and parameters: {'n_estimators': 1800, 'learning_rate': 0.2987035257330816, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:47] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:48,037]\u001b[0m Trial 235 finished with value: 48841.69638952905 and parameters: {'n_estimators': 2000, 'learning_rate': 0.1924555837912114, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,096]\u001b[0m Trial 236 finished with value: 128968.11676119138 and parameters: {'n_estimators': 1900, 'learning_rate': 0.04677040648206524, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,154]\u001b[0m Trial 237 finished with value: 39133.28249993186 and parameters: {'n_estimators': 1700, 'learning_rate': 0.2566509077327803, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,234]\u001b[0m Trial 238 finished with value: 42110.54000730715 and parameters: {'n_estimators': 1900, 'learning_rate': 0.23329936679681368, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:48,296]\u001b[0m Trial 239 finished with value: 138325.004895974 and parameters: {'n_estimators': 1800, 'learning_rate': 0.039031234734204445, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,360]\u001b[0m Trial 240 finished with value: 50706.009535861835 and parameters: {'n_estimators': 1700, 'learning_rate': 0.18948759030871046, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,412]\u001b[0m Trial 241 finished with value: 180337.554815579 and parameters: {'n_estimators': 1900, 'learning_rate': 0.01073818886134328, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,470]\u001b[0m Trial 242 finished with value: 38975.453173210335 and parameters: {'n_estimators': 1900, 'learning_rate': 0.2584268493404686, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:48,544]\u001b[0m Trial 243 finished with value: 39402.439571571056 and parameters: {'n_estimators': 1900, 'learning_rate': 0.2617462349584277, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,607]\u001b[0m Trial 244 finished with value: 41752.81391281406 and parameters: {'n_estimators': 1900, 'learning_rate': 0.23510976934254388, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,674]\u001b[0m Trial 245 finished with value: 169442.20444933575 and parameters: {'n_estimators': 1600, 'learning_rate': 0.017383172504275006, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,728]\u001b[0m Trial 246 finished with value: 121601.93977343761 and parameters: {'n_estimators': 1700, 'learning_rate': 0.053014493406072706, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:48,798]\u001b[0m Trial 247 finished with value: 42593.546423123254 and parameters: {'n_estimators': 1800, 'learning_rate': 0.2976480743661574, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,862]\u001b[0m Trial 248 finished with value: 45751.74464579747 and parameters: {'n_estimators': 1900, 'learning_rate': 0.21494951871343734, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,924]\u001b[0m Trial 249 finished with value: 39041.03213253651 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2574361504234921, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:48,987]\u001b[0m Trial 250 finished with value: 81832.49025663805 and parameters: {'n_estimators': 2000, 'learning_rate': 0.10016853107752545, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:48] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:49,053]\u001b[0m Trial 251 finished with value: 40186.24391555508 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2649887483299557, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,113]\u001b[0m Trial 252 finished with value: 44601.08124021763 and parameters: {'n_estimators': 1100, 'learning_rate': 0.2126443026674747, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,160]\u001b[0m Trial 253 finished with value: 40119.10843672639 and parameters: {'n_estimators': 1800, 'learning_rate': 0.2998527610876501, 'max_depth': 4}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,244]\u001b[0m Trial 254 finished with value: 52136.89849666958 and parameters: {'n_estimators': 1400, 'learning_rate': 0.173351868005178, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:49,311]\u001b[0m Trial 255 finished with value: 90655.01090308982 and parameters: {'n_estimators': 1800, 'learning_rate': 0.08665210816564416, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,370]\u001b[0m Trial 256 finished with value: 41830.730492859206 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2347283301148063, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,429]\u001b[0m Trial 257 finished with value: 46053.144528576304 and parameters: {'n_estimators': 1700, 'learning_rate': 0.202040945781668, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,487]\u001b[0m Trial 258 finished with value: 39121.58841001792 and parameters: {'n_estimators': 1600, 'learning_rate': 0.26064788711148923, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:49,554]\u001b[0m Trial 259 finished with value: 38300.063763739 and parameters: {'n_estimators': 1600, 'learning_rate': 0.2614672478070513, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,623]\u001b[0m Trial 260 finished with value: 56484.70646694724 and parameters: {'n_estimators': 1500, 'learning_rate': 0.160439535117247, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,682]\u001b[0m Trial 261 finished with value: 43737.790116297074 and parameters: {'n_estimators': 1600, 'learning_rate': 0.22074013096351477, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,740]\u001b[0m Trial 262 finished with value: 41467.82153229156 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2997760957021886, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:49,812]\u001b[0m Trial 263 finished with value: 48157.67126652329 and parameters: {'n_estimators': 200, 'learning_rate': 0.19624065590176537, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,871]\u001b[0m Trial 264 finished with value: 40732.571008807725 and parameters: {'n_estimators': 1900, 'learning_rate': 0.24104287061559077, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,940]\u001b[0m Trial 265 finished with value: 38696.159447375656 and parameters: {'n_estimators': 1900, 'learning_rate': 0.2616683106497657, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:49,997]\u001b[0m Trial 266 finished with value: 72511.11377205743 and parameters: {'n_estimators': 1900, 'learning_rate': 0.11417224917246328, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:49] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:50,069]\u001b[0m Trial 267 finished with value: 42787.13201285495 and parameters: {'n_estimators': 1900, 'learning_rate': 0.29878301453749617, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,130]\u001b[0m Trial 268 finished with value: 192049.73114987012 and parameters: {'n_estimators': 2000, 'learning_rate': 0.004039392028542517, 'max_depth': 15}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,191]\u001b[0m Trial 269 finished with value: 45539.62870422405 and parameters: {'n_estimators': 1900, 'learning_rate': 0.21805352926620936, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,270]\u001b[0m Trial 270 finished with value: 188573.33858221804 and parameters: {'n_estimators': 1400, 'learning_rate': 0.0059832551006671255, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:50,332]\u001b[0m Trial 271 finished with value: 197995.99130059665 and parameters: {'n_estimators': 1800, 'learning_rate': 0.0008032883609653727, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,387]\u001b[0m Trial 272 finished with value: 96820.09724316913 and parameters: {'n_estimators': 1800, 'learning_rate': 0.07867553415366284, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,456]\u001b[0m Trial 273 finished with value: 50472.4324280162 and parameters: {'n_estimators': 1900, 'learning_rate': 0.18101933317454366, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,516]\u001b[0m Trial 274 finished with value: 62085.84807180083 and parameters: {'n_estimators': 400, 'learning_rate': 0.13952919655488968, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:50,596]\u001b[0m Trial 275 finished with value: 38976.602049907255 and parameters: {'n_estimators': 1300, 'learning_rate': 0.25838985732922465, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,652]\u001b[0m Trial 276 finished with value: 156697.37084439053 and parameters: {'n_estimators': 1300, 'learning_rate': 0.0257280681203022, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,707]\u001b[0m Trial 277 finished with value: 42619.77701667686 and parameters: {'n_estimators': 1200, 'learning_rate': 0.23677076810427414, 'max_depth': 5}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,769]\u001b[0m Trial 278 finished with value: 46188.72132017419 and parameters: {'n_estimators': 1200, 'learning_rate': 0.2012010802839517, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:50,867]\u001b[0m Trial 279 finished with value: 38931.61355450408 and parameters: {'n_estimators': 1100, 'learning_rate': 0.26235681617303674, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,932]\u001b[0m Trial 280 finished with value: 42956.59203662629 and parameters: {'n_estimators': 1100, 'learning_rate': 0.29902174231113865, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:50,993]\u001b[0m Trial 281 finished with value: 52129.2497561834 and parameters: {'n_estimators': 1100, 'learning_rate': 0.17319879942737706, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,050]\u001b[0m Trial 282 finished with value: 118013.20183188206 and parameters: {'n_estimators': 2000, 'learning_rate': 0.05647201824249767, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:50] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:51,129]\u001b[0m Trial 283 finished with value: 41994.47368522898 and parameters: {'n_estimators': 1100, 'learning_rate': 0.2329249756357463, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,188]\u001b[0m Trial 284 finished with value: 46914.34494509866 and parameters: {'n_estimators': 1300, 'learning_rate': 0.205859967229031, 'max_depth': 7}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,262]\u001b[0m Trial 285 finished with value: 40141.912533093775 and parameters: {'n_estimators': 1300, 'learning_rate': 0.25691455974871646, 'max_depth': 11}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,330]\u001b[0m Trial 286 finished with value: 194788.6927236481 and parameters: {'n_estimators': 1100, 'learning_rate': 0.00253640014964996, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:51,399]\u001b[0m Trial 287 finished with value: 40004.063933642545 and parameters: {'n_estimators': 1200, 'learning_rate': 0.2614636866017125, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,448]\u001b[0m Trial 288 finished with value: 55682.73196881878 and parameters: {'n_estimators': 1000, 'learning_rate': 0.1581190878263581, 'max_depth': 4}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,508]\u001b[0m Trial 289 finished with value: 43293.637011699124 and parameters: {'n_estimators': 1900, 'learning_rate': 0.22611279294033382, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,570]\u001b[0m Trial 290 finished with value: 42166.36928543777 and parameters: {'n_estimators': 1200, 'learning_rate': 0.2988954197751415, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:51,647]\u001b[0m Trial 291 finished with value: 46657.92616312257 and parameters: {'n_estimators': 900, 'learning_rate': 0.20207233008727088, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,708]\u001b[0m Trial 292 finished with value: 39188.86896418513 and parameters: {'n_estimators': 1000, 'learning_rate': 0.25571187559897146, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,765]\u001b[0m Trial 293 finished with value: 198821.12987381924 and parameters: {'n_estimators': 1800, 'learning_rate': 0.0003622933629987968, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,827]\u001b[0m Trial 294 finished with value: 177878.17810587186 and parameters: {'n_estimators': 800, 'learning_rate': 0.01220916355142994, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:51,897]\u001b[0m Trial 295 finished with value: 51118.67415819986 and parameters: {'n_estimators': 2000, 'learning_rate': 0.18538053062078486, 'max_depth': 11}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:51,951]\u001b[0m Trial 296 finished with value: 135259.4827307967 and parameters: {'n_estimators': 1900, 'learning_rate': 0.0415167283421649, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,021]\u001b[0m Trial 297 finished with value: 43436.06875746437 and parameters: {'n_estimators': 1200, 'learning_rate': 0.229504706723464, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,079]\u001b[0m Trial 298 finished with value: 67093.66987036975 and parameters: {'n_estimators': 600, 'learning_rate': 0.12535311890790365, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:51] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:52,156]\u001b[0m Trial 299 finished with value: 42170.41428122388 and parameters: {'n_estimators': 100, 'learning_rate': 0.29905049775626474, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,217]\u001b[0m Trial 300 finished with value: 39123.217350658735 and parameters: {'n_estimators': 1900, 'learning_rate': 0.25679986713949854, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,282]\u001b[0m Trial 301 finished with value: 44880.210741048904 and parameters: {'n_estimators': 1400, 'learning_rate': 0.20708341933061336, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,359]\u001b[0m Trial 302 finished with value: 59796.19567357602 and parameters: {'n_estimators': 1500, 'learning_rate': 0.1476572301203122, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:52,428]\u001b[0m Trial 303 finished with value: 42104.36490221916 and parameters: {'n_estimators': 700, 'learning_rate': 0.2326933112784734, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,495]\u001b[0m Trial 304 finished with value: 51120.888983455276 and parameters: {'n_estimators': 1800, 'learning_rate': 0.1755269280038163, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,550]\u001b[0m Trial 305 finished with value: 139397.50973992125 and parameters: {'n_estimators': 2000, 'learning_rate': 0.038337728807407295, 'max_depth': 5}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:52,620]\u001b[0m Trial 306 finished with value: 108749.08798300567 and parameters: {'n_estimators': 100, 'learning_rate': 0.06566743773513162, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,686]\u001b[0m Trial 307 finished with value: 39508.39324272189 and parameters: {'n_estimators': 300, 'learning_rate': 0.26223429981074003, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,742]\u001b[0m Trial 308 finished with value: 107462.71119467354 and parameters: {'n_estimators': 100, 'learning_rate': 0.06697702749200951, 'max_depth': 7}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,800]\u001b[0m Trial 309 finished with value: 44298.07919693795 and parameters: {'n_estimators': 1300, 'learning_rate': 0.22145358286061906, 'max_depth': 3}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,858]\u001b[0m Trial 310 finished with value: 199311.70685450317 and parameters: {'n_estimators': 1700, 'learning_rate': 0.00010097383074112626, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:52,928]\u001b[0m Trial 311 finished with value: 40249.80781867514 and parameters: {'n_estimators': 600, 'learning_rate': 0.26181117181153707, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:52,988]\u001b[0m Trial 312 finished with value: 197164.99338152134 and parameters: {'n_estimators': 1800, 'learning_rate': 0.0012495514479776634, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,048]\u001b[0m Trial 313 finished with value: 48556.69454069699 and parameters: {'n_estimators': 1500, 'learning_rate': 0.19426394785760648, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:52] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:53,122]\u001b[0m Trial 314 finished with value: 154268.52619993323 and parameters: {'n_estimators': 1900, 'learning_rate': 0.02735097093493295, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,180]\u001b[0m Trial 315 finished with value: 183318.14290295963 and parameters: {'n_estimators': 200, 'learning_rate': 0.008979735862637223, 'max_depth': 7}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,236]\u001b[0m Trial 316 finished with value: 189261.70391980227 and parameters: {'n_estimators': 500, 'learning_rate': 0.0055960792637263865, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,307]\u001b[0m Trial 317 finished with value: 39583.32532834744 and parameters: {'n_estimators': 100, 'learning_rate': 0.2627933606470232, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:53,392]\u001b[0m Trial 318 finished with value: 43078.9827754115 and parameters: {'n_estimators': 800, 'learning_rate': 0.2999812435604582, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,450]\u001b[0m Trial 319 finished with value: 174732.96057334254 and parameters: {'n_estimators': 1600, 'learning_rate': 0.014102348138886521, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,514]\u001b[0m Trial 320 finished with value: 43680.88725690632 and parameters: {'n_estimators': 2000, 'learning_rate': 0.22590043593590434, 'max_depth': 6}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,571]\u001b[0m Trial 321 finished with value: 145396.1210857718 and parameters: {'n_estimators': 100, 'learning_rate': 0.03372288413245492, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:53,632]\u001b[0m Trial 322 finished with value: 87781.38374953065 and parameters: {'n_estimators': 900, 'learning_rate': 0.09084960220761043, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,696]\u001b[0m Trial 323 finished with value: 54248.50186063326 and parameters: {'n_estimators': 1100, 'learning_rate': 0.1695582423043835, 'max_depth': 8}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,763]\u001b[0m Trial 324 finished with value: 47931.39319698086 and parameters: {'n_estimators': 1200, 'learning_rate': 0.19863254014282067, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,827]\u001b[0m Trial 325 finished with value: 39091.41505044204 and parameters: {'n_estimators': 700, 'learning_rate': 0.2618524872522512, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:53,887]\u001b[0m Trial 326 finished with value: 42487.11576293604 and parameters: {'n_estimators': 700, 'learning_rate': 0.23146867208672092, 'max_depth': 5}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:53,938]\u001b[0m Trial 327 finished with value: 180835.03708694357 and parameters: {'n_estimators': 700, 'learning_rate': 0.010473767654577928, 'max_depth': 4}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,007]\u001b[0m Trial 328 finished with value: 57814.26152961197 and parameters: {'n_estimators': 700, 'learning_rate': 0.15419680139807834, 'max_depth': 9}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,065]\u001b[0m Trial 329 finished with value: 195982.71070174495 and parameters: {'n_estimators': 1900, 'learning_rate': 0.0018872290389946077, 'max_depth': 14}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:53] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:54,139]\u001b[0m Trial 330 finished with value: 43045.57865477164 and parameters: {'n_estimators': 800, 'learning_rate': 0.2994634228626886, 'max_depth': 10}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,209]\u001b[0m Trial 331 finished with value: 43608.122622058036 and parameters: {'n_estimators': 600, 'learning_rate': 0.22813701505702352, 'max_depth': 11}. Best is trial 222 with value: 37591.26290793679.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,273]\u001b[0m Trial 332 finished with value: 37574.28472651776 and parameters: {'n_estimators': 700, 'learning_rate': 0.26364097356592897, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,344]\u001b[0m Trial 333 finished with value: 99899.66105541211 and parameters: {'n_estimators': 700, 'learning_rate': 0.07526608792693482, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:54,429]\u001b[0m Trial 334 finished with value: 48404.09216418666 and parameters: {'n_estimators': 700, 'learning_rate': 0.19541686532024163, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,499]\u001b[0m Trial 335 finished with value: 38557.799085621264 and parameters: {'n_estimators': 800, 'learning_rate': 0.2539719794320131, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,560]\u001b[0m Trial 336 finished with value: 170602.43178398526 and parameters: {'n_estimators': 800, 'learning_rate': 0.016649175754659604, 'max_depth': 12}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:54,625]\u001b[0m Trial 337 finished with value: 165911.36850972156 and parameters: {'n_estimators': 900, 'learning_rate': 0.019587512263850308, 'max_depth': 6}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,696]\u001b[0m Trial 338 finished with value: 44891.9419311641 and parameters: {'n_estimators': 800, 'learning_rate': 0.21763070308411175, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,760]\u001b[0m Trial 339 finished with value: 78824.1190584338 and parameters: {'n_estimators': 400, 'learning_rate': 0.10371359406681534, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:54,846]\u001b[0m Trial 340 finished with value: 66814.05668001641 and parameters: {'n_estimators': 1000, 'learning_rate': 0.12849542860936944, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,912]\u001b[0m Trial 341 finished with value: 50688.43457187709 and parameters: {'n_estimators': 800, 'learning_rate': 0.1816216479260366, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:54,981]\u001b[0m Trial 342 finished with value: 39727.33952942417 and parameters: {'n_estimators': 300, 'learning_rate': 0.26599572614721495, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:54] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:55,064]\u001b[0m Trial 343 finished with value: 43085.20684144136 and parameters: {'n_estimators': 200, 'learning_rate': 0.2997786475965734, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:55,133]\u001b[0m Trial 344 finished with value: 43563.18888577349 and parameters: {'n_estimators': 2000, 'learning_rate': 0.22952848413827182, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:55,204]\u001b[0m Trial 345 finished with value: 48925.90047471531 and parameters: {'n_estimators': 1400, 'learning_rate': 0.1964198295601318, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:55,290]\u001b[0m Trial 346 finished with value: 41751.894575698665 and parameters: {'n_estimators': 900, 'learning_rate': 0.2998616786083981, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:55,349]\u001b[0m Trial 347 finished with value: 57912.00035911192 and parameters: {'n_estimators': 600, 'learning_rate': 0.15362300493555198, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:55,418]\u001b[0m Trial 348 finished with value: 42189.18549452137 and parameters: {'n_estimators': 1100, 'learning_rate': 0.23958882809131374, 'max_depth': 6}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:55,489]\u001b[0m Trial 349 finished with value: 38555.62908777818 and parameters: {'n_estimators': 200, 'learning_rate': 0.25400516281270213, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:55,559]\u001b[0m Trial 350 finished with value: 52154.717369310434 and parameters: {'n_estimators': 200, 'learning_rate': 0.17418738647541304, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:55,621]\u001b[0m Trial 351 finished with value: 192548.69269561113 and parameters: {'n_estimators': 200, 'learning_rate': 0.00376294869327289, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:55,710]\u001b[0m Trial 352 finished with value: 45708.596367311045 and parameters: {'n_estimators': 200, 'learning_rate': 0.20880601028342086, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:55] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:58,544]\u001b[0m Trial 353 finished with value: 39504.36854382124 and parameters: {'n_estimators': 300, 'learning_rate': 0.2570900526265465, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:58] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:59,103]\u001b[0m Trial 354 finished with value: 42536.118640429515 and parameters: {'n_estimators': 100, 'learning_rate': 0.23054791570236938, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,174]\u001b[0m Trial 355 finished with value: 48930.89694004134 and parameters: {'n_estimators': 1200, 'learning_rate': 0.19391334946328748, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,238]\u001b[0m Trial 356 finished with value: 39314.89281984703 and parameters: {'n_estimators': 200, 'learning_rate': 0.2573660004640636, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,309]\u001b[0m Trial 357 finished with value: 44851.45849448534 and parameters: {'n_estimators': 1900, 'learning_rate': 0.22009944824050906, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:59,376]\u001b[0m Trial 358 finished with value: 179017.5622597368 and parameters: {'n_estimators': 100, 'learning_rate': 0.011518643058582417, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,441]\u001b[0m Trial 359 finished with value: 190916.32409638382 and parameters: {'n_estimators': 2000, 'learning_rate': 0.004667495193676816, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,500]\u001b[0m Trial 360 finished with value: 187440.33447429602 and parameters: {'n_estimators': 200, 'learning_rate': 0.006623567732204302, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:59,594]\u001b[0m Trial 361 finished with value: 50727.46099536184 and parameters: {'n_estimators': 200, 'learning_rate': 0.17736803731608655, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,657]\u001b[0m Trial 362 finished with value: 148597.20423179207 and parameters: {'n_estimators': 300, 'learning_rate': 0.03139413435074341, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,715]\u001b[0m Trial 363 finished with value: 128318.66996915209 and parameters: {'n_estimators': 100, 'learning_rate': 0.04725488724929525, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:17:59,791]\u001b[0m Trial 364 finished with value: 62422.01359780641 and parameters: {'n_estimators': 1000, 'learning_rate': 0.13837247430699115, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,862]\u001b[0m Trial 365 finished with value: 174503.45241250895 and parameters: {'n_estimators': 1900, 'learning_rate': 0.014242400489786979, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,926]\u001b[0m Trial 366 finished with value: 39097.92537157571 and parameters: {'n_estimators': 1300, 'learning_rate': 0.26226736076841156, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:17:59,987]\u001b[0m Trial 367 finished with value: 44034.84516100793 and parameters: {'n_estimators': 100, 'learning_rate': 0.2976023096916034, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:17:59] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:00,063]\u001b[0m Trial 368 finished with value: 154617.7881525995 and parameters: {'n_estimators': 200, 'learning_rate': 0.027114751853903354, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,134]\u001b[0m Trial 369 finished with value: 43606.840024954465 and parameters: {'n_estimators': 2000, 'learning_rate': 0.22792761144192342, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,191]\u001b[0m Trial 370 finished with value: 46504.7848924097 and parameters: {'n_estimators': 1900, 'learning_rate': 0.20533597736278977, 'max_depth': 4}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,257]\u001b[0m Trial 371 finished with value: 39124.21114231327 and parameters: {'n_estimators': 100, 'learning_rate': 0.2606053919236248, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:00,346]\u001b[0m Trial 372 finished with value: 75665.01314942307 and parameters: {'n_estimators': 200, 'learning_rate': 0.10887654073531496, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,414]\u001b[0m Trial 373 finished with value: 166120.63540320747 and parameters: {'n_estimators': 300, 'learning_rate': 0.01947552761043993, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,493]\u001b[0m Trial 374 finished with value: 56481.99390258949 and parameters: {'n_estimators': 500, 'learning_rate': 0.16163513359160092, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,563]\u001b[0m Trial 375 finished with value: 170879.12721138383 and parameters: {'n_estimators': 100, 'learning_rate': 0.01647638886410853, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:00,654]\u001b[0m Trial 376 finished with value: 114679.4608199225 and parameters: {'n_estimators': 1200, 'learning_rate': 0.05966256612909042, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,715]\u001b[0m Trial 377 finished with value: 185263.4858891723 and parameters: {'n_estimators': 1900, 'learning_rate': 0.00786688651123064, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,775]\u001b[0m Trial 378 finished with value: 40686.4897778615 and parameters: {'n_estimators': 1800, 'learning_rate': 0.2998517402977455, 'max_depth': 5}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:00,852]\u001b[0m Trial 379 finished with value: 198146.10276488768 and parameters: {'n_estimators': 100, 'learning_rate': 0.0007229243111391781, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:00,915]\u001b[0m Trial 380 finished with value: 42525.21067818549 and parameters: {'n_estimators': 1100, 'learning_rate': 0.230260855201408, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:00] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:01,035]\u001b[0m Trial 381 finished with value: 48410.617964194804 and parameters: {'n_estimators': 200, 'learning_rate': 0.193326683818495, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,103]\u001b[0m Trial 382 finished with value: 38396.49263848588 and parameters: {'n_estimators': 300, 'learning_rate': 0.25421791900183943, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,174]\u001b[0m Trial 383 finished with value: 41577.77788709888 and parameters: {'n_estimators': 300, 'learning_rate': 0.24172335205772583, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,234]\u001b[0m Trial 384 finished with value: 123375.51481607991 and parameters: {'n_estimators': 200, 'learning_rate': 0.051546098301510766, 'max_depth': 11}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:01,317]\u001b[0m Trial 385 finished with value: 43089.39137343103 and parameters: {'n_estimators': 800, 'learning_rate': 0.2996188926443448, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,382]\u001b[0m Trial 386 finished with value: 88673.53089886635 and parameters: {'n_estimators': 200, 'learning_rate': 0.08961966796613659, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,449]\u001b[0m Trial 387 finished with value: 45884.72668316292 and parameters: {'n_estimators': 400, 'learning_rate': 0.20897720647897836, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:01,522]\u001b[0m Trial 388 finished with value: 165688.3542523479 and parameters: {'n_estimators': 100, 'learning_rate': 0.019762362342746635, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,597]\u001b[0m Trial 389 finished with value: 50905.98097931091 and parameters: {'n_estimators': 300, 'learning_rate': 0.17739405363190122, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,670]\u001b[0m Trial 390 finished with value: 197048.49531081357 and parameters: {'n_estimators': 200, 'learning_rate': 0.0013122398675541208, 'max_depth': 11}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:01,746]\u001b[0m Trial 391 finished with value: 40445.66968961675 and parameters: {'n_estimators': 900, 'learning_rate': 0.2563119519637983, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,823]\u001b[0m Trial 392 finished with value: 58779.217271829504 and parameters: {'n_estimators': 700, 'learning_rate': 0.15207328911659665, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:01,888]\u001b[0m Trial 393 finished with value: 190429.5950041514 and parameters: {'n_estimators': 100, 'learning_rate': 0.004938403229509954, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:01,961]\u001b[0m Trial 394 finished with value: 44172.223395521265 and parameters: {'n_estimators': 200, 'learning_rate': 0.2247618267110009, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,024]\u001b[0m Trial 395 finished with value: 195242.41878329846 and parameters: {'n_estimators': 100, 'learning_rate': 0.002288906164282872, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,093]\u001b[0m Trial 396 finished with value: 39260.35533536683 and parameters: {'n_estimators': 1000, 'learning_rate': 0.25938518756397333, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:01] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:02,163]\u001b[0m Trial 397 finished with value: 48018.28806297698 and parameters: {'n_estimators': 100, 'learning_rate': 0.19670943752258582, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,246]\u001b[0m Trial 398 finished with value: 41559.7567057365 and parameters: {'n_estimators': 300, 'learning_rate': 0.232848546671487, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,309]\u001b[0m Trial 399 finished with value: 64827.70723896998 and parameters: {'n_estimators': 1400, 'learning_rate': 0.1324590648784898, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,380]\u001b[0m Trial 400 finished with value: 38707.93281262971 and parameters: {'n_estimators': 800, 'learning_rate': 0.2647638910391068, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:02,450]\u001b[0m Trial 401 finished with value: 41469.22495197698 and parameters: {'n_estimators': 900, 'learning_rate': 0.29972022974514473, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,508]\u001b[0m Trial 402 finished with value: 143725.79153303834 and parameters: {'n_estimators': 800, 'learning_rate': 0.0349065955215423, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,578]\u001b[0m Trial 403 finished with value: 50846.5901521596 and parameters: {'n_estimators': 800, 'learning_rate': 0.18190523583639476, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:02,676]\u001b[0m Trial 404 finished with value: 45579.440233938134 and parameters: {'n_estimators': 900, 'learning_rate': 0.21460979571253538, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,730]\u001b[0m Trial 405 finished with value: 198523.9143831045 and parameters: {'n_estimators': 800, 'learning_rate': 0.0005217839602207597, 'max_depth': 5}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,794]\u001b[0m Trial 406 finished with value: 39612.19157405189 and parameters: {'n_estimators': 700, 'learning_rate': 0.2566336624548122, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:02,875]\u001b[0m Trial 407 finished with value: 54471.59003618456 and parameters: {'n_estimators': 800, 'learning_rate': 0.16768984981150617, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:02,952]\u001b[0m Trial 408 finished with value: 41152.235993336864 and parameters: {'n_estimators': 1600, 'learning_rate': 0.29958321674785005, 'max_depth': 12}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,034]\u001b[0m Trial 409 finished with value: 104082.60075106118 and parameters: {'n_estimators': 600, 'learning_rate': 0.07071815609799886, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:02] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:03,106]\u001b[0m Trial 410 finished with value: 71436.88779135102 and parameters: {'n_estimators': 800, 'learning_rate': 0.11741395924209047, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,190]\u001b[0m Trial 411 finished with value: 45913.50374108369 and parameters: {'n_estimators': 200, 'learning_rate': 0.21457975706979432, 'max_depth': 11}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,256]\u001b[0m Trial 412 finished with value: 39935.65457935505 and parameters: {'n_estimators': 700, 'learning_rate': 0.2507823695037066, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:03,335]\u001b[0m Trial 413 finished with value: 163067.5051483109 and parameters: {'n_estimators': 100, 'learning_rate': 0.021452985096468404, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,401]\u001b[0m Trial 414 finished with value: 190038.7554331994 and parameters: {'n_estimators': 700, 'learning_rate': 0.005155698405055556, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,471]\u001b[0m Trial 415 finished with value: 47211.16719948733 and parameters: {'n_estimators': 300, 'learning_rate': 0.2041805315731841, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:03,553]\u001b[0m Trial 416 finished with value: 181661.6198268882 and parameters: {'n_estimators': 100, 'learning_rate': 0.009960151497505183, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,613]\u001b[0m Trial 417 finished with value: 39902.651908749984 and parameters: {'n_estimators': 200, 'learning_rate': 0.2602130346364145, 'max_depth': 4}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,697]\u001b[0m Trial 418 finished with value: 117267.01708599464 and parameters: {'n_estimators': 800, 'learning_rate': 0.05710860237717256, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:03,774]\u001b[0m Trial 419 finished with value: 42710.12157790487 and parameters: {'n_estimators': 500, 'learning_rate': 0.23035027320408727, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,841]\u001b[0m Trial 420 finished with value: 57248.96908911349 and parameters: {'n_estimators': 1500, 'learning_rate': 0.15691844834456856, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:03,912]\u001b[0m Trial 421 finished with value: 148904.02030622802 and parameters: {'n_estimators': 2000, 'learning_rate': 0.031157959687121897, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:03,973]\u001b[0m Trial 422 finished with value: 196587.71368357108 and parameters: {'n_estimators': 200, 'learning_rate': 0.001570590223255445, 'max_depth': 3}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,038]\u001b[0m Trial 423 finished with value: 50807.78375064869 and parameters: {'n_estimators': 100, 'learning_rate': 0.1871445970542862, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,103]\u001b[0m Trial 424 finished with value: 40072.58386737847 and parameters: {'n_estimators': 200, 'learning_rate': 0.26146588485769023, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:03] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:04,182]\u001b[0m Trial 425 finished with value: 42784.794443774816 and parameters: {'n_estimators': 400, 'learning_rate': 0.2988797613394198, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,248]\u001b[0m Trial 426 finished with value: 44687.78675507346 and parameters: {'n_estimators': 700, 'learning_rate': 0.2232971097693733, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,309]\u001b[0m Trial 427 finished with value: 178141.1903024403 and parameters: {'n_estimators': 900, 'learning_rate': 0.012051680835827257, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,382]\u001b[0m Trial 428 finished with value: 193332.07626413248 and parameters: {'n_estimators': 100, 'learning_rate': 0.0033322433038919124, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:04,458]\u001b[0m Trial 429 finished with value: 40047.70996672368 and parameters: {'n_estimators': 200, 'learning_rate': 0.250046539862088, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,522]\u001b[0m Trial 430 finished with value: 47965.28521507515 and parameters: {'n_estimators': 1900, 'learning_rate': 0.19820540846964335, 'max_depth': 5}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,585]\u001b[0m Trial 431 finished with value: 186835.47114062263 and parameters: {'n_estimators': 800, 'learning_rate': 0.006956670487962179, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:04,673]\u001b[0m Trial 432 finished with value: 42948.84050712798 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2998202219600922, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,750]\u001b[0m Trial 433 finished with value: 41863.29917521655 and parameters: {'n_estimators': 100, 'learning_rate': 0.23422202279866058, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,824]\u001b[0m Trial 434 finished with value: 52213.61698403258 and parameters: {'n_estimators': 300, 'learning_rate': 0.17163463568369255, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:04,908]\u001b[0m Trial 435 finished with value: 39402.33188378736 and parameters: {'n_estimators': 600, 'learning_rate': 0.26174802531365743, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:04,994]\u001b[0m Trial 436 finished with value: 61214.44608050026 and parameters: {'n_estimators': 100, 'learning_rate': 0.14421795930091005, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,064]\u001b[0m Trial 437 finished with value: 80057.7113958735 and parameters: {'n_estimators': 200, 'learning_rate': 0.10179326971177388, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:04] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:05,136]\u001b[0m Trial 438 finished with value: 137813.48837812027 and parameters: {'n_estimators': 1900, 'learning_rate': 0.03954101417387522, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,214]\u001b[0m Trial 439 finished with value: 45885.77603287197 and parameters: {'n_estimators': 300, 'learning_rate': 0.20702243058158973, 'max_depth': 13}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,287]\u001b[0m Trial 440 finished with value: 96246.17179498148 and parameters: {'n_estimators': 100, 'learning_rate': 0.07933108960094412, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:05,369]\u001b[0m Trial 441 finished with value: 39429.98968611158 and parameters: {'n_estimators': 200, 'learning_rate': 0.2598155260609544, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,436]\u001b[0m Trial 442 finished with value: 42555.439413347485 and parameters: {'n_estimators': 200, 'learning_rate': 0.22740269249764417, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,506]\u001b[0m Trial 443 finished with value: 188176.70372798987 and parameters: {'n_estimators': 800, 'learning_rate': 0.006206959340373267, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:05,583]\u001b[0m Trial 444 finished with value: 174226.61281080198 and parameters: {'n_estimators': 2000, 'learning_rate': 0.014411584075462943, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,654]\u001b[0m Trial 445 finished with value: 50558.13559529252 and parameters: {'n_estimators': 900, 'learning_rate': 0.17863290516519315, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,727]\u001b[0m Trial 446 finished with value: 188903.37749205297 and parameters: {'n_estimators': 100, 'learning_rate': 0.005797395885514381, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:05,799]\u001b[0m Trial 447 finished with value: 186570.32135011783 and parameters: {'n_estimators': 700, 'learning_rate': 0.007118941429346852, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,871]\u001b[0m Trial 448 finished with value: 182143.26425832752 and parameters: {'n_estimators': 1700, 'learning_rate': 0.009678205653590632, 'max_depth': 11}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:05,936]\u001b[0m Trial 449 finished with value: 182850.840867715 and parameters: {'n_estimators': 600, 'learning_rate': 0.009265834874231308, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:05] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:06,022]\u001b[0m Trial 450 finished with value: 42694.325082370706 and parameters: {'n_estimators': 1400, 'learning_rate': 0.29939914053324224, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,094]\u001b[0m Trial 451 finished with value: 46972.70180487777 and parameters: {'n_estimators': 1900, 'learning_rate': 0.20519015535359494, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,166]\u001b[0m Trial 452 finished with value: 39718.708822219625 and parameters: {'n_estimators': 100, 'learning_rate': 0.26040949674809855, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,231]\u001b[0m Trial 453 finished with value: 43681.637297166024 and parameters: {'n_estimators': 700, 'learning_rate': 0.2250347901119113, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:06,330]\u001b[0m Trial 454 finished with value: 137052.99230757513 and parameters: {'n_estimators': 1000, 'learning_rate': 0.04011023299336056, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,395]\u001b[0m Trial 455 finished with value: 191177.76806973238 and parameters: {'n_estimators': 1800, 'learning_rate': 0.0045392253493023475, 'max_depth': 4}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,465]\u001b[0m Trial 456 finished with value: 39403.12628701672 and parameters: {'n_estimators': 200, 'learning_rate': 0.26173496085496956, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:06,541]\u001b[0m Trial 457 finished with value: 193545.24572748676 and parameters: {'n_estimators': 100, 'learning_rate': 0.003215335579029212, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,614]\u001b[0m Trial 458 finished with value: 157886.05587185913 and parameters: {'n_estimators': 300, 'learning_rate': 0.02492774458915288, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,678]\u001b[0m Trial 459 finished with value: 185600.43919112455 and parameters: {'n_estimators': 1600, 'learning_rate': 0.007673728637100484, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:06,776]\u001b[0m Trial 460 finished with value: 47831.760418151156 and parameters: {'n_estimators': 200, 'learning_rate': 0.1960829063710649, 'max_depth': 6}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,844]\u001b[0m Trial 461 finished with value: 56607.31474187186 and parameters: {'n_estimators': 1300, 'learning_rate': 0.15918088790532597, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:06,915]\u001b[0m Trial 462 finished with value: 177657.682221293 and parameters: {'n_estimators': 1900, 'learning_rate': 0.01234103022779609, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:07,023]\u001b[0m Trial 463 finished with value: 40705.88024884723 and parameters: {'n_estimators': 100, 'learning_rate': 0.2986963371385678, 'max_depth': 5}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,095]\u001b[0m Trial 464 finished with value: 44562.13471115712 and parameters: {'n_estimators': 2000, 'learning_rate': 0.2223223145949435, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,160]\u001b[0m Trial 465 finished with value: 121605.91657084995 and parameters: {'n_estimators': 900, 'learning_rate': 0.05301338485596302, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:06] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:07,237]\u001b[0m Trial 466 finished with value: 41676.2921075011 and parameters: {'n_estimators': 800, 'learning_rate': 0.24210234951504236, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,306]\u001b[0m Trial 467 finished with value: 50838.001860231394 and parameters: {'n_estimators': 200, 'learning_rate': 0.18523554098614992, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,398]\u001b[0m Trial 468 finished with value: 157040.6346324716 and parameters: {'n_estimators': 300, 'learning_rate': 0.025494165915108526, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:07,477]\u001b[0m Trial 469 finished with value: 40186.98064782405 and parameters: {'n_estimators': 700, 'learning_rate': 0.26497465094432554, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,557]\u001b[0m Trial 470 finished with value: 194189.02621047047 and parameters: {'n_estimators': 100, 'learning_rate': 0.00286259263073395, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,625]\u001b[0m Trial 471 finished with value: 63687.34150649253 and parameters: {'n_estimators': 200, 'learning_rate': 0.13266784194995293, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:07,698]\u001b[0m Trial 472 finished with value: 197783.51514630395 and parameters: {'n_estimators': 800, 'learning_rate': 0.000917253459534698, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,762]\u001b[0m Trial 473 finished with value: 166297.52937432178 and parameters: {'n_estimators': 400, 'learning_rate': 0.019371990965903342, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:07,851]\u001b[0m Trial 474 finished with value: 43087.350986949285 and parameters: {'n_estimators': 1900, 'learning_rate': 0.2992848435444514, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:07,932]\u001b[0m Trial 475 finished with value: 45752.039861918696 and parameters: {'n_estimators': 100, 'learning_rate': 0.21857543121441464, 'max_depth': 11}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,005]\u001b[0m Trial 476 finished with value: 95063.9314877084 and parameters: {'n_estimators': 1800, 'learning_rate': 0.08100560546891629, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,076]\u001b[0m Trial 477 finished with value: 42062.92746102228 and parameters: {'n_estimators': 100, 'learning_rate': 0.23380616779128283, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:07] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:08,149]\u001b[0m Trial 478 finished with value: 199026.95601645808 and parameters: {'n_estimators': 2000, 'learning_rate': 0.0002525757074921575, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,223]\u001b[0m Trial 479 finished with value: 50878.219855591116 and parameters: {'n_estimators': 200, 'learning_rate': 0.18636313260683157, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,293]\u001b[0m Trial 480 finished with value: 40966.09858898253 and parameters: {'n_estimators': 800, 'learning_rate': 0.25365450319019556, 'max_depth': 5}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:08,368]\u001b[0m Trial 481 finished with value: 148190.4474116002 and parameters: {'n_estimators': 100, 'learning_rate': 0.031688422962913826, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,432]\u001b[0m Trial 482 finished with value: 195734.62644761597 and parameters: {'n_estimators': 600, 'learning_rate': 0.002021485245505789, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,501]\u001b[0m Trial 483 finished with value: 194686.9759578961 and parameters: {'n_estimators': 700, 'learning_rate': 0.002591819617916842, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:08,586]\u001b[0m Trial 484 finished with value: 56894.83447705343 and parameters: {'n_estimators': 200, 'learning_rate': 0.15982639047373737, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,655]\u001b[0m Trial 485 finished with value: 183659.81961527624 and parameters: {'n_estimators': 500, 'learning_rate': 0.00879634709733939, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,728]\u001b[0m Trial 486 finished with value: 46778.83063279629 and parameters: {'n_estimators': 1700, 'learning_rate': 0.20454750122227036, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:08,818]\u001b[0m Trial 487 finished with value: 198580.0451510845 and parameters: {'n_estimators': 1900, 'learning_rate': 0.0004909508987477076, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,890]\u001b[0m Trial 488 finished with value: 39192.57103742445 and parameters: {'n_estimators': 1000, 'learning_rate': 0.267200568168654, 'max_depth': 6}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:08,961]\u001b[0m Trial 489 finished with value: 42397.33068724781 and parameters: {'n_estimators': 200, 'learning_rate': 0.23340038170089722, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:08] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:09,039]\u001b[0m Trial 490 finished with value: 133449.30113036028 and parameters: {'n_estimators': 100, 'learning_rate': 0.042920722487127305, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:09,156]\u001b[0m Trial 491 finished with value: 71432.35130705987 and parameters: {'n_estimators': 300, 'learning_rate': 0.11737122892505586, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:09] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:09] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:09,289]\u001b[0m Trial 492 finished with value: 198189.25068488216 and parameters: {'n_estimators': 1500, 'learning_rate': 0.0006998358302510063, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:09] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:09] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:10,022]\u001b[0m Trial 493 finished with value: 43189.18225476868 and parameters: {'n_estimators': 900, 'learning_rate': 0.29910254664809205, 'max_depth': 10}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:10] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:11,975]\u001b[0m Trial 494 finished with value: 45549.1133490262 and parameters: {'n_estimators': 200, 'learning_rate': 0.2015144043677493, 'max_depth': 7}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:12] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:12,685]\u001b[0m Trial 495 finished with value: 39290.77478246897 and parameters: {'n_estimators': 2000, 'learning_rate': 0.25775848959649966, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:12,759]\u001b[0m Trial 496 finished with value: 199289.0485490794 and parameters: {'n_estimators': 100, 'learning_rate': 0.00011307183867062966, 'max_depth': 6}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:12,832]\u001b[0m Trial 497 finished with value: 54558.15943062692 and parameters: {'n_estimators': 700, 'learning_rate': 0.16885151485350006, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n", + "\u001b[32m[I 2023-04-16 20:18:12,904]\u001b[0m Trial 498 finished with value: 131052.83691128207 and parameters: {'n_estimators': 1600, 'learning_rate': 0.04483998848585322, 'max_depth': 8}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:12] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:12] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "[20:18:12] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[32m[I 2023-04-16 20:18:13,008]\u001b[0m Trial 499 finished with value: 41779.176777447385 and parameters: {'n_estimators': 1900, 'learning_rate': 0.23483326097631244, 'max_depth': 9}. Best is trial 332 with value: 37574.28472651776.\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[20:18:12] WARNING: ../src/learner.cc:767: \n", + "Parameters: { \"n_estimators\", \"n_iter_no_change\" } are not used.\n", + "\n", + "Optimized RMSE: 37574.2847\n", + "Best params:\n", + "\tn_estimators: 700\n", + "\tlearning_rate: 0.26364097356592897\n", + "\tmax_depth: 9\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "from optuna.visualization.matplotlib import plot_optimization_history\n", + "plot_optimization_history(study)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 512 + }, + "id": "aR5RQXLH1reT", + "outputId": "e6fe892d-6dd0-42d5-b3be-66aa1fbeeed1" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "plot_optimization_history is experimental (supported from v2.2.0). The interface can change in the future.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 21 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxgAAAHMCAYAAABWTQ50AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADRYklEQVR4nOzdeVxU5f4H8M+ZhX2XXWRzTxH3FUXN3HOj0rSbaYJdrczqdq2f5VJ2s301KZe0TDR3zSWXMhHKLUXQREQURQQSkAGBWc7vD5oTIzPD7HPmzPf9evkq5pw588wzZ3m+z8qwLMuCEEIIIYQQQixAZO8EEEIIIYQQQoSDAgxCCCGEEEKIxVCAQQghhBBCCLEYCjAIIYQQQgghFkMBBiGEEEIIIcRiKMAghBBCCCGEWAwFGIQQQgghhBCLoQCDEEIIIYQQYjEUYBBCCCGEEEIshgIMQpzc4MGDwTCMVT/jqaeeAsMwKCgosOrnGOqbb74BwzD45ptv7J0UixDa97EmW5zvhBDi7CjAIMROTp06hRkzZiA2Nhbu7u7w8fFBXFwc/vOf/+DmzZsW+xy+Fe5t4ZdffgHDMFi8eLG9k2IwdZDw1FNP6dxH/b0GDx5s0c9evHgxGIbBL7/8YtHj2oL6/G78z9PTE507d8aCBQtQXl5ulc+1xu9ACCFCIbF3AghxNizLYsGCBXj33XchkUjw0EMP4dFHH0V9fT0yMjLw/vvvY8WKFVi3bh0eeeQRq6dn/fr1qKmpsepn/O9//8OCBQvQsmVLq36OoSZOnIi+ffsiLCzM3kmxCKF9H1OMHz8eXbt2BQAUFxdj9+7dWL58ObZs2YITJ04gICDAvgkkhBAnQgEGITb25ptv4t1330V0dDT27NmDTp06aWzfunUrnnjiCUyZMgUHDx7EkCFDrJqeyMhIqx4fAMLCwnhV+PX19YWvr6+9k2ExQvs+ppgwYYJG68/777+PPn364MKFC/jss8+waNEi+yWOEEKcDHWRIsSGCgoK8Oabb0IqlWLXrl1NggsASEpKwkcffQSlUol///vfUKlU3LbGfe1//PFH9O/fH56envD398cjjzyCy5cvaxyLYRisW7cOABATE8N1IYmOjub20dYnvXEXo1OnTmHkyJHw9fWFv78/kpKSUFhYCADIz8/HlClTEBQUBHd3dwwZMgTnzp1r8p20ddOKjo5u0rWl8b/GhcXc3FwsWLAAPXv2RFBQEFxdXREVFYWUlBTcuHGjyWepg7IlS5ZoHFPdBUjfmIXTp08jKSkJwcHB3OfMmTMHt27d0vu9UlNTERcXBzc3N4SEhCAlJQWVlZVN3mMNur5PVlYWHn/8cURHR8PV1RVBQUHo3r07XnjhBcjlcgANv8OSJUsAAEOGDNHIr8Zu3bqFuXPnIjo6Gi4uLggKCsKkSZNw+vRpvenZv38/Bg8eDF9fXzAMg/Lycnh4eKB169ZgWVbr93n44YfBMAxOnTplcp54eXlh+vTpAIATJ040u79KpcLKlSvRq1cveHl5wdPTE7169cKXX36p9RoEgKNHj2rklyN1ySOEEGuiFgxCbGjt2rVQKBR47LHHEBcXp3O/WbNmYenSpbh06RKOHj3apBVj27Zt2LdvHyZOnIjBgwfj7Nmz2Lp1K37++WdkZGSgffv2AIBFixZhx44dOHfuHObNmwc/Pz8A4P7bnJMnT2L58uVITExEcnIyzp8/j23btiE7Oxs7d+5EQkICOnTogCeffBLXrl3Dtm3b8NBDDyE/Px9eXl56j/3CCy+goqKiyeu7d+/GmTNn4OHhofF9V65ciSFDhqB///5wcXFBTk4OVq1ahd27d+PUqVNc96sJEyYAANatW4fExESNfvKNAytt9uzZg6SkJLAsi0ceeQRRUVE4ffo0vvzyS+zcuRPp6emIiYlp8r5XXnkFBw4cwMMPP4zhw4fj559/xtdff428vDwcOXJE72daS1ZWFvr06QOGYTBu3DjExMTg7t27yMvLw4oVK/DWW29BKpXihRdewI4dO3D06FFMnz5dax5dvXoVCQkJKCoqwtChQ/H444+jsLAQP/zwA3788Uds3boVY8eObfK+LVu2YP/+/Rg1ahSeeeYZXLt2Df7+/pgyZQrWrl2LQ4cO4aGHHtJ4T2FhIfbt24cePXqgZ8+eZuWBOoAxZFD3v/71L3z//fdo1aoVZs2aBYZhsH37dsyZMwfp6enYsGEDAKBr165YtGgRlixZgqioKI1AmMZkEELI31hCiM0MHTqUBcB+9dVXze47depUFgD75ptvcq+tXbuWBcACYHfv3q2x/8cff8wCYIcOHarx+vTp01kA7NWrV7V+TmJiInv/reDnn3/mPue7777T2DZz5kwWAOvv78++9dZbGtuWLl3KAmA//vhjo9Kg9tNPP7ESiYRt06YNW1payr1+48YNtra2tsn+Bw4cYEUiEfvMM89oTf+iRYu0fo46H9euXcu9VlVVxQYEBLAikYj99ddfNfZ/5513WADsQw89pPV7tWrVir127Rr3ulwuZwcOHMgCYH///Xe93/n+NMXHx7OLFi3S+k/9eYmJic1+nxdffJEFwO7YsaPJZ925c4dVKpXc34sWLWIBsD///LPWtA0fPpwF0OT3Pn78OCsWi9mAgAC2qqqqSXoYhmH37dvX5HgnT55kAbBJSUlNtqnTYsg1wrL//AaNvzvLNvyeHTt2ZAGwS5cu5V7Xdr5///33LAC2W7duGt9DJpOxPXr0YAGwGzZs0HiPtt+BEEJIA2rBIMSG1N1sWrVq1ey+6n2KioqabBs6dGiTGuNnn30Wn332GY4cOYJr164hKirK7PQmJCRg2rRpGq9Nnz4da9asga+vLxYsWKCx7cknn8Qbb7yBs2fPGv1Z2dnZeOSRR+Dr64u9e/ciMDCQ26ZrcPjw4cPRqVMnHDhwwOjPu9/OnTtx584dPP744xg4cKDGtpdeegkrV67EwYMHcf369SbjVt544w2N1yQSCWbMmIFjx47hxIkT6N27t8HpOHfunNZuZqZyd3dv8pq/v7/B779x4wZ++uknREZG4pVXXtHY1r9/fzz++OP47rvvsG3bNjz55JMa28ePH4+RI0c2OWbPnj3Rs2dP7Ny5E8XFxQgNDQUAKJVKrF69Gt7e3nj88ccNTiMA7Nixg+uCd/v2bezatQtFRUVo3bo1nn32Wb3vXbNmDQDgnXfe0Wh58/T0xPLlyzFs2DCsWrUKU6dONSpNhBDirGgMBiEOKDExsclrYrEYCQkJAIA//vjDIp+jrYtKeHg4gIauImKxWGObOhC4f1xEc27duoUxY8agrq4OO3bsQNu2bTW2syyL7777DsOGDUNQUBAkEgnX7/38+fMWmdb3zJkzABqCt/tJJBIMGjQIgPa81ZZP6gDR2GlSp0+fDpZltf77+eefDT7O5MmTIRaLMWHCBDz55JNYv349rly5YlRagH++78CBAyGVSptsV+eXtnzRF1jNmTMHCoWCK9wDwN69e3Hjxg088cQTzXaxu9/OnTuxZMkSLFmyBOvWrYOvry/+85//4MSJE80GVGfOnIFIJNLaxSkxMRFisdhi1xQhhDgDCjAIsSF1Ta16kLQ+6n3UBfrGQkJC9B7fUoOLtc1MJJFImt2mHkBsiOrqaowdOxaFhYVYu3YtFyQ19uKLL+Jf//oXLly4gBEjRuCll17CokWLsGjRIkRFRaG+vt7gz9NFnWe6ZrtSv65t3Ii2MS3qvFAqlWanzRS9e/fGsWPHMHToUGzZsgXTp09HmzZt0KFDB2zcuNHg45iTL+rzUZspU6bA398fX3/9NTeI+quvvgIAzJ492+D0qa1du5YLxGpqanDhwgW8++67Bk1PW1lZiYCAALi4uDTZJpFIEBgYaLMB+4QQIgTURYoQG0pISMDPP/+MQ4cOITk5Wed+SqWSm/FowIABTbbfvn1b6/uKi4sBaC/885FSqcSUKVNw5swZLFu2TGu3mJKSEnz66afo3LkzMjIy4O3trbHdmMKyPuo8U+fh/dTd2xwlbwGgX79+2LNnD+rq6nD69Gns378fn332GaZOnYqgoCAMGzas2WOYky/6Ble7u7vjqaeewkcffYSffvoJnTp1wr59+9CnTx/Ex8cb8vUsxtfXF3fu3IFcLm/SSqNQKFBWVgYfHx+bpokQQhwZtWAQYkNPPfUUxGIxtm/fjpycHJ37rVmzBkVFRWjfvr3W7lBHjx5t8ppSqUR6ejoAoFu3btzr6m5M9qpJ1+eFF17Anj17MHPmTLz22mta98nPz4dKpcLw4cObBBc3btxAfn5+k/eY8p3VeaZtNWuFQoFjx44BALp3727wMfnC1dUV/fv3x9KlS/Hpp58CaOhSpKYvv9T5kp6eDoVC0WS7utuWKfny73//GwzDIDU1FatXr4ZSqTSp9cJc3bp1g0qlwq+//tpk26+//gqlUtnk+4lEIl5eU4QQwgcUYBBiQ7GxsXjttdcgl8sxbtw4XLhwock+O3bswLx58yAWi/Hll19CJGp6mR45cgR79uzReO3zzz/HlStXMGTIEI0B3i1atAAAXL9+3cLfxjwff/wxPv/8cwwbNgwrV67UuZ962tT09HSNAp1MJkNycrLWQq8p33nChAkICAjAxo0b8dtvvzVJ69WrVzFs2DCbLExoCRkZGbh3716T19WtX42nAdaXXxEREXjooYdQUFCAjz/+WGPb77//ju+//x7+/v6YOHGi0Wls27YtHnzwQezZswcrV66En58fpkyZYvRxzDVz5kwAwKuvvqqxqn1NTQ03kcHTTz+t8Z4WLVoY1NWREEKcEXWRIsTGFi9ejOrqanz44YeIj4/HiBEj0KlTJ8jlcmRkZOD333+Hu7s7Nm7cqHMV74cffhgTJ07ExIkT0aZNG5w9exb79u1DQEAAVqxYobHvgw8+iPfeew/JyclISkqCt7c3/Pz8mp1Zx5qKi4vx0ksvgWEYdO7cGcuWLWuyT9euXTFhwgSEhoZiypQpSEtLQ9euXTF8+HBUVlbi4MGDcHNzQ9euXZvMWtW+fXu0bNkSaWlpkEqliIqKAsMw+Ne//qVzdi0vLy+sWbMGjz76KBITE/Hoo48iMjISp0+fxk8//YTQ0FCkpqZaIzus4t1338WRI0cwcOBAxMTEwMvLCzk5Odi3bx/8/f2RkpLC7TtkyBCIRCK8+uqryM7O5gZFL1y4EACwcuVKDBgwAP/5z3/w008/oWfPntw6GCKRCGvXrm3SumSoOXPm4NChQ7h9+zaee+45rbNeWdvUqVOxc+dObN68GZ06dcKECRPAMAx27NiBq1evYvLkyU1mU3vwwQeRlpaGhx9+GN27d4dUKsWgQYO4yQAIIcSp2W2CXEKc3O+//84++eSTbHR0NOvm5sZ6enqynTp1Yl966SW2sLBQ63sar3ewe/dutm/fvqyHhwfr6+vLTpo0ib106ZLW933wwQdshw4dWBcXFxYAGxUVxW3Ttw6GtnUkrl69ygJgp0+frvWzoGV9gPvXwVAfQ9+/xsevrq5mX3vtNbZ169asq6srGxERwc6ZM4ctKyvTmn6WZdkTJ06wQ4cOZX18fFiGYTTWedC2bkTj902YMIENDAxkpVIp26pVK/aZZ55hb9682WRffet7NLcWx/3UadKVr42Pacg6GAcOHGCfeuoptmPHjqyPjw/r4eHBtmvXjn3uuefYgoKCJsf+9ttv2fj4eNbNzY37DRq7ceMG+8wzz7CRkZGsVCplW7RowY4fP549ceKEzu+iLX/vp1Ao2MDAQBYAm52d3ez+99O1DoYuus4XpVLJfvHFF2yPHj1Yd3d31t3dne3evTv7+eefa6wZonb79m328ccfZ4ODg1mRSGTUb00IIULHsOzfS50SQnjvm2++wYwZM7B27VqNFYQJcVT5+flo06YNBgwYwI1zIYQQ4thoDAYhhBC7ef/998GyrF277BFCCLEsGoNBCCHEpq5fv47vv/8ely9fxtq1axEfH49HH33U3skihBBiIRRgEEIIsan8/Hy8+uqr8PDwwEMPPaRztjRCCCGOicZgEEIIIYQQQiyGqowIIYQQQgghFkMBBiGEEEIIIcRiKMAghBBCCCGEWAwFGIQQQgghhBCLoVmkeKC8vBwKhcLixw0KCkJpaanFj0s0UT7bBuWz7VBe2wbls21YI58lEgn8/f0tekxChIQCDB5QKBSQy+UWPSbDMNyxaaIw66F8tg3KZ9uhvLYNymfboHwmxD6oixQhhBBCCCHEYijAIIQQQgghhFgMBRiEEEIIIYQQi6EAgxBCCCGEEGIxNMibEEIIIcQB3bt3D7dv3wbLsjSInVgNwzBgGAYhISFwd3c36D0UYBBCCCGEOJh79+7h5s2b8Pb2hkhEHVKIdalUKty8eRMtW7Y0KMigM5IQQgghxMHcvn2bggtiMyKRCN7e3rh9+7Zh+1s5PYQQQgghxMJYlqXggtiUSCQyuCser7pIbd++HSdOnMDNmzfh4uKCdu3a4YknnkB4eDi3T319PdavX4+MjAzI5XLEx8dj1qxZ8PPz4/YpKyvD119/jZycHLi5uSExMRFTp06FWCzm9snJycH69etRWFiIFi1aICkpCYMHD9ZIz/79+7F7925UVFQgKioKM2fORJs2bYxKCyGEEEKIpdGYC2IPhp53vAp9L1y4gBEjRmDZsmVYuHAhlEol3nrrLdTW1nL7rFu3DqdPn8aLL76IJUuWoLy8HB988AG3XaVS4X//+x8UCgXeeustzJ07F7/88gs2bdrE7VNSUoJ33nkHnTp1wrvvvosxY8Zg5cqVOHv2LLdPRkYG1q9fj0ceeQTLly9HVFQUli1bhsrKSoPTQgixL3oAWw/lLeEzOj8JsS9eBRj/93//h8GDB6NVq1aIjo7G3LlzUVZWhvz8fABATU0Njhw5gunTp6Nz586IjY3FnDlzcOnSJeTm5gIAzp07hxs3buC5555DdHQ0unXrhsmTJ+PAgQNQKBQAgJ9++gnBwcF48sknERERgZEjR6Jv37748ccfubTs2bMHDz74IIYMGYKIiAgkJyfDxcUFP//8s8FpsRdWpYKyuBj3Ll2CsrgYrEr1zza66RKBq65X4qOjhZi0Ngfj12Rj0tocfHS0ENX1SnsnjVdMuRdQ3hJbae781LZd2/n54S+FkNUprJVMYkU9evRAamqq2fuYKy0tTaP3Cl/xLZ286iJ1v5qaGgCAl5cXACA/Px9KpRJxcXHcPi1btkRgYCByc3PRrl075ObmIjIyUqObUteuXbFq1SoUFhYiJiYGly9f1jgGAMTHx+Obb74BACgUCuTn52PChAncdpFIhLi4OC54MCQt95PL5ZDL5dzfDMNwI/EZhjEhh5qS5eXjt437UVdwDVKlAnKxBJLISBR06I4DNd5QKFlIxAwSYnwxu384PF3EzR+U6KT+3Sz1+xHtDM3n6nolUjbn4tqdWqgavb41qwynCmX4enJ7pz7nq+uVSM0oQvrVSp33Al15TXnbgGVZi1zvuvLZUsd3RM2dn/q2syyr4/wsxbni4/gyqQ08pLyqU3VaN2/exLvvvosjR47gzp07CAkJwahRo/DSSy8hICDAqGMdOHAAHh4eFktbjx49kJKSgtmzZ3OvjR8/Hg8++KDFPuN+u3fvRnJyMv744w+EhYU12d6nTx8MHz4cb775ptXSYA28DTBUKhW++eYbtG/fHpGRkQCAiooKSCQSeHp6auzr6+uLiooKbp/7x0D4+vpy29T/Vb/WeJ979+6hvr4eMpkMKpWqyXH8/PxQVFRkcFrut337dmzZsoX7OyYmBsuXL0dQUJDevDBU+cVc7PlwHVBZgRI3P9S6usBNUY+g3Fx4FdyEpPVA3PIOAaC+6d7DtjkD4OXK29PAYYSGhto7Cbxk6cJSc/m8eFcOrpVrFjAAQMUC18prseFcJRaN62Sx9NiSuXkpq1Ng+orjyCuRQdWo8lfXveD+vBZy3jZHVqfA+wcu4dDF25ArWUjFDIZ1DMHLI9qbff8MDQ216vH5Tn1eN3d+fvt0H8xJ+73J9h/OlWL7+TJIxQzuye8/OxvOz7wSGb47WyHY89MSbBXYFhQUYPTo0WjdujVSU1MRGRmJS5cuYcmSJTh8+DD27dsHf39/g48XGBhoxdQ2cHd3N3jtB1OMHDkSAQEB2LRpE1544QWNbZmZmbh69SqmTZtmtc+3Ft7euVavXo3CwkIsXbrU3kmxmIkTJ2Ls2LHc3+qLubS0lOu+ZSpWpcLhz74FKitQ7O4PN2U9oABqpG64JglBlOw2+hVl40a7ILCMiLvpLt12BvMHtzLrs50ZwzAIDQ1FcXExdT/7myG15MYyNJ8PZBdpFD4aU7HA/uwipPQyrobMniyZlx/+Uoi82zKtAULje4GuvBZa3hqqul6J5E2XmtSMr88swNE/i01uuVHn85XrNzEr7U+LH5/PtJ3XnlIRrvxVi/tPMfX5OS31OPL/ahrgAoBCxUKh6+SEdc5PiURiscpBe6muV+LL9Bv49Uo5FCoWEhGDQa398e+ECKudcwsWLICLiws2b97MFdojIiLQuXNn9OnTB2+//Tbee+89bn+ZTIbZs2fjwIED8PHxwbx58/D0009z2+9vcaisrMTixYuxf/9+1NXVoWvXrli6dCk6d+7MvefAgQP44IMPcPHiRXh6eqJPnz5Yt24dJkyYgMLCQrz++ut4/fXXATSM2U1LS8PChQuRl5eHK1euoF+/fjh+/Djatm3LHXPlypVYvXo1Tp48CQC4ePEilixZgt9++w0eHh4YPHgw3nzzTbRo0aJJnkilUjzyyCNIS0trEmB8//336NGjBzp06IAvv/wSaWlpuHbtGvz8/DB8+HC88cYbXC+f+z333HOorKzE+vXrudcWLlyI7Oxs7NixA0BDZf5nn32Gb7/9FiUlJYiNjcVLL72Ehx9+uNnfsjm8bC9cvXo1zpw5g0WLFmn8GH5+flAoFKiurtbYv7Kykmtt8PPza9KCoB6Y3XifxoO11fu4u7vDxcUFPj4+EIlETY7TuHXEkLTcTyqVwsPDg/vXOCJWr8Jp6j/V7duou3oNJW5+8KmvQWRVCQLq7jYcnGFQ6uaHVrISBNX8851ULHAsv9Lsz3b2f5b4/YTyT1anQPKmS9h6rhS37tajtFqOW3frsTWrFMmbLkFWp7BaPqtUKsiV2oof/1AoG/azdz7ZIy+P5VdqLZxpuxfcn9eG5G15jRxVtXK755ul/6Vm3GxS+Ffn2bXyWqRm3NR5PjZ3bABYedy04zvqP13ndZ6W4KJxXuRrySNjWPrad3TV9UrM/D4HP/xxu+F3kDX8Dj+cvY2Z3+dYZVxVeXk5fv75Z8yYMaNJi0BISAiSkpKwc+dOjfz94osv0KlTJxw+fBjPP/88Fi5ciF9++UXnZzz99NMoKyvDxo0bcejQIcTFxeGRRx5BeXk5AODgwYN46qmn8OCDD+Lw4cPYsmULunfvDgBYu3YtwsPD8d///hfnz5/H+fPnmxy/devW6Nq1K7Zu3arx+tatW5GUlASgoRyYlJSEuLg4HDx4EJs2bUJpaSmSk5N1pnvatGnIz89HZmYm95pMJsPu3bsxdepUAA1d9ZctW4Zff/0Vn332GdLT082uhP/kk0+wefNmvPvuu/j111/xzDPPYM6cOcjIyDDruADPAgyWZbF69WqcOHECb7zxBoKDgzW2x8bGQiwWa/zoRUVFKCsr48Y8tGvXDtevX9cIILKysuDu7o6IiAgAQNu2bZucOFlZWdwxJBIJYmNjkZ2dzW1XqVTIzs7m9jEkLbakqq6GRFmPWokLoKWZs1bsAhelHB6KOo3X5UqVIG6WhB++yizSW1j6KrPIap/NMAwkzcwJLxYxDtO/3ZJ5ybIsFKpmgi+V7oKTIXlbq2Ax+4fLghvwfSz/rt7ALD3/Lve3KYPg06/qD/waH785jnAv13VeN8vMryYRO861bwtfpt9AgZYWIRULFNypxZfpNyz+mfn5+WBZVqPmv7G2bduioqICZWVl3Gu9e/fG888/j9atW2PWrFl4+OGHdQ7q/u233/DHH39g1apV6Nq1K2JjY7FkyRL4+Phg9+7dAICPPvoIEyZMwH//+1+0a9cOnTt3xrx58wAA/v7+EIvF8PLyQkhICEJCQrR+TlJSErZt28b9feXKFZw7d44LMFavXo3OnTvj//7v/9C2bVvExcXhk08+QXp6Oq5cuaL1mO3bt0ePHj3w/fffc6/t2rULQEPvFwCYPXs2EhISEBkZiYEDB+LVV1/l9jFFXV0dPvnkE3z88ccYOnQooqOjMWXKFDzyyCMarR6m4lWAsXr1ahw7dgzz5s2Du7s7KioqUFFRgfr6egCAh4cHhg4divXr1yM7Oxv5+flYsWIF2rVrxxXq4+PjERERgc8//xwFBQU4e/Ys0tLSMGLECEilUgDA8OHDUVJSgu+++w43b97EgQMHkJmZiTFjxnBpGTt2LA4fPoxffvkFN27cwKpVq1BXV8etlWFIWmxJ5OkJhbhhzIUa0+iG7KasR71YihqJq8b77txTIOmbCzQTDLEIYwpj1jAw1gciHWUIEdOw3VFYMi8tEXzpy1s1UwIfPjMmMFMPgt96rgzFVfUoq1aguKoeW7PKkLI5V+v9lWVZKJT680Bf4Ac43sxe+s5rvcyIDUQMMDDGt/kdncivV8r1t2heKbfaZxtz3ffs2bPJ35cvX9a6b05ODqqrq9G+fXtER0dz/65fv46CggJun0GDBpmcdgBcV6pTp04BALZs2YIuXbpwgVNOTg6OHz+ukYb+/fsDAJcObaZOnYrdu3dDJpMBaOge9fDDD3NdoI4ePYqkpCR06dIFMTExmDt3Lu7cucNNiGSsq1evoqamBo8++qhGWjdv3qw3nYbi1RiMn376CQCwePFijdfnzJnDFeynT58OhmHwwQcfQKFQcIvbqYlEIixYsACrVq3CwoUL4erqisTEREyePJnbJzg4GAsWLMC6deuwd+9etGjRAs888wy6du3K7dO/f3/cvXsXmzdvRkVFBaKjo/Haa69pdH9qLi22xAQHwzUmEsF/5qJarBlEgGURVFuBPN8IlHr4aWxSseAegqcKZfjqsXaC6+9LbMOYwpi1ahJT+oXjVKGsYTByo2eYiAGi/d2Q0i9c95t5xBp5OTDWB1uzyrSOozAk+FLn7dU7tTr3UQc+8xN1H6e6XomvMotwLP8uFCoVJCIRBsb6IKUf/2a1MyYwM6TF6YVBERq/F8MwkIj1/376Ar/mZvbi2/3ckPNaF1PvGCIGaBPshZT+jnHt20LD76C/kC+3wr06JiYGDMPoDBAuX74MPz8/kwduV1dXIyQkBNu3b2+yTT2xj5ubm0nHbiwkJAQJCQnYtm0bevbsiW3btuGpp57SSMfw4cO5cRz3v1eXiRMn4vXXX8fOnTvRr18/nDhxAgsXLgQAXL9+HU888QSeeuopvPrqq/D398fvv/+OF154QWN20sa0rfLeeF91F//vv/++yaQerq73lSNNwKsAY/Pmzc3u4+LiglmzZuktyAcFBeHVV1/Vexz1Inv6jBw5EiNHjjQrLbbCiEToM2UUfv7gNkL/ugWpUgGGVcFDXoug2gpUunghM7wzWEb7w7LxQ3B+Ig36JsbjQxclTxcxvnqsHb7KLEJ6/l1u4GICTwuwulgyL9WFBHODL08XMVIfbYtxq7NRq9BdONEX+DhagRgwPDBrrsVpa1YZfs6r4AKq2f1bAgASYnyxNavUpMDPkKCGT/dzQ85rXZpp6GnCTSKCv7sEA2N98cak7qi6U8r7FjNbafgd9N87JFa4VwcEBCAxMRFr167F7NmzNcZh3L59G1u3bsWjjz6q8bmnT5/WOMbp06d1drHq0qULSkpKIJFIuNlH7/fAAw/g119/xeOPP651u1QqhVLZfOtfUlISli5diokTJ+LatWtcNyZ1Ovbs2YPIyEhIJIYXs728vDBu3Dh8//33KCgoQOvWrdG3b18ADWu8qVQqLFmyhAscdu7cqfd4LVq0wJ9//qnxWnZ2Ntebp3379nB1dcWNGze4FhZL4lUXKWIerzYxGPLSU3CNagVPKBBYdxc+8hrk+UZgV+sEFHrrjpwB23RhIcLWN8pb5zZbdVHydBFjfmIrbJ3RCTtmdsLWGZ0wP7EV7wquzTGnu5e2bjNfZRbh4wmtkdQlEGHeLgjylCLM2wVJXQKRamDB3stVAj93qd599AU+9hyjY6qUfuGI8ndr8ls0DswMqZlXsdDoNqUeqD+7f/PH18XeXRJNoe+8ZgC0aeHW7HoVHlIRWnhIINGym4gBYgPcsOvpv6/9wa0EP9WvKQa19td7fxnU2vCpYo3xzjvvoL6+HpMnT0ZmZiZu3ryJI0eO4LHHHkNoaChee+01jf1PnDiBzz77DFeuXMHq1auxa9cunYOlExMT0bNnT0yfPh0///wzrl+/jhMnTuDtt9/G2bNnAQAvv/wytm/fjuXLlyM3NxcXLlzAp59+yh2jVatW+O2333Dr1i389ddfOr/H2LFjUV1djVdeeQUDBgzQaAGYOXMmKioqMHv2bPzxxx+4evUqjhw5gueff77Z4GXq1Kk4efIk1q1bpxEExcTEQC6XY9WqVSgoKMDmzZuxbt06vcdKSEjA2bNnsWnTJuTn52P58uUaAYeXlxfmzJmDN954A2lpabh69SqysrKwatUqpKWl6T22IeiqExivNjHo/q8JUBz7Fe4xsVglD0X6XxLIWQahDFBRqzC59pEQfarrlfjjpkzn9kg/V5t3UXLk89jUFgdDWgnmJ7Yy+To3p6uVIQVifd2r7MHQVjFjaubVAdUHBy4hpVeASa1ufOiSaIrmzusvH22Hf234EzXyep3H8HYVY9uMTqiRqxy+tdJe/p0QgZPXK1FwR8vvEOCOfydEWOVzY2Nj8dNPP+Hdd9/FrFmzUFFRgeDgYIwaNQovv/xykzUw/v3vf+PcuXP44IMP4OXlhaVLl2Lo0KFaj80wDDZu3Ii3334b8+bNw19//YXg4GD07duXm1J4wIABWLVqFT788EN89tln8Pb25loJAOC///0vXn75ZfTu3Rt1dXUoKSnR+lleXl4YPnw4du7ciU8++URjW2hoKPbs2YOlS5fiscceQ319PSIiIjB06FCt3ZYa69u3L9q0aYOrV69qdO3v3Lkzli5dis8++wzLli1D37598X//93949tlndR5r6NChePHFF7F06VLU1dXh8ccfx2OPPYaLFy9y+yxYsAAtWrTAp59+imvXrsHX1xdxcXFNpss1BcNSm6HdlZaW6uxDZwpFTg4Up04hsEcPVMfFcdPqMQyDSWtzUFyl+8Yd6u2CbTMaFiPi24OJjxiGQVhYGG7duuX0ze8fHS3E1nNlOguQEzoH4JWhUSYd21nzWT1ewZgClL7fQcQASV0C9XabaS6vuQBGRwFRV2sIy7IYvyYbZdW61/wJ8pRix8xOvL7v6LovfnS0UGfgpUuEvzt+eLKjRj4bc9815H6+9akHbJafzaVdfT4fvVKJu7UK1CtZuIhF8HUXY1CsL1L6hcNDKmr2PBEzwL6UOI2WCV2fba17h1Qqtfs6GPn5+fD21t1q3Bz1OhjHrpRDrmIhFTEYaOV1MCytc+fOWLBgAZ544gl7J8VpVFVVITY2ttn9qAVDyBrdS9U33uZqH/tGeeGjo4UOMQCT8Etzs8P8fk136wbRTt3da36i4QVPa7cSmDrOhQ9jdCxBV/p01czro1A2nSHKmO+v734OAHdrFRi/Jtuq93FDB+3ralmrU6jgIXUxqjVIyQJf/3ZLI1Dm+3nDR54uYrw8NAovD41yuArFmpoanDhxAqWlpWjfvr29k0O0oDEYQqTnJqGvP3Gknyv+uFlt1DSLhADmr7NAmmfogG5b/A6mjnOx9jTC9jy/1IFX4zEuzU3ra+7aDLru52o1cpVV7+PGTM2ra/wNi6bjbww5D/g4vsSROVJwAQDffvstZs+ejZSUFPTq1cveySFaUIAhZFoettoeguqBnl1beqGwvM6hBmASfhBK7TQfGVNotsfvYMyxDBkwbSw+rQNxf+CV1CVQb0D1UEf9E28Y8nn33891DZC2xn3cmEH7xgxIT+4bhmZm76UKCyc3e/ZsXLp0CW+++aa9k0J0oC5SQtTMA19Xt4tJa3McbgAm4Q9z11mwNEdr8m/MnLUi+PY7NGbpaYT5PO1ts1MDB7jhpRHtUXWn1KzPuf9+nvTNBZ0DpC19Hze0O56xA9K9XCUI9JTitkz32ESqsCCE3yjAELTma3fUN2hHnZGE8AcfFrlzpEXcdDG30MyH30EfU8aV6GLMOhD2uHfpC6hm928JL1cJqiz8mba6jxv7zDC2ZW1Qa1/eBsqEkOZRgCFIxj84qIsLMZe9F7njc222McxdPM3ev4MxzL2fNFeD/uuVSm4/ewWcni5ivDAoAvMTGY2CvTXupba8j9fIVaip1x9gNP4sY1vW+B4oE0L0owBDyIzsn8rnrhXEMViydtpYjraqsS6WmAXKnr+DrRhSg15WLW8yZa+tAk5rtaY193va4j6uDuZr5Lrz//7PMjZgcKRAmRDSFAUYQmRiWYJqjIgl2bpQ64iLuN3PGl0VhRhcAIbV1iu1FLJtEXAa0ppmzOrSxgQrtriPq4N5fe7/LFMCBmcIlAkRKgowhMzIFgyqMSKOSihjiBy9q6Kt87e5dSB0sXbAaUhr2ouDIw06lrFd/2xxH29uzRsPqUjrgovmBAx8PecJIdpRgCFEZtyIqcaIOCJHL5g35mhdFe05sF5XbT2DhrzS1oKhZs2A05DWtBcHG3YsU7r+Wfo+3vgYhgTzni5indPlqjnCtUhIc5577jlUVlZi/fr19k4K79A6GAJm7hzh9AAgjsTai7jZir7F00QMIFeyvFn00piF1qxB17o+j8QHItBTqve91go4Lb3YoTHrR2hj6neU1Sm0ri9SI1cJJpgnAKtSQXnrFhRXrkB56xbYZs5dcz333HMIDg7m/rVv3x6TJ09GTk6OxT7j3XffxZAhQ/Tu8+qrr2LAgAFat924cQOhoaHYv3+/xdLkjKgFQ4Doxk6ckVDGEKkLzV+k38CeC3egaPS8V6iAXTl/4VxRNS9mxeLDwHp9tfX2aAmyZGuarbv+qVujjl6pxF/V8iYtQOpuWX2jvLEr5y+HaWUj2ikKClB/7BgU164DdXWAqyskUZFwGTgQkuhoq33u0KFD8cknnwAASkpK8M477+CJJ57AH3/8YbXPvN/UqVOxevVqnDhxAr1799bYlpaWhsDAQAwbNsxm6REiasEQMlrklDgRfavUa+sPzmeeLmJIxSJoK1taY0VmU5lbu25pjQvZ1lg13FCWak2zZde/xq1RJbKmwQXwz7kHsHbLW2IZioIC1G7ZAsWlXIh8fSCKbAWRrw8Ul3IbXi8osNpnu7i4ICQkBCEhIYiLi8Nzzz2HmzdvoqysjNvn5s2bmDVrFtq0aYN27drhySefxPXr17ntx48fx4gRIxAdHY02bdpgzJgxKCwsRFpaGt5//33k5ORwrSRpaWlN0hAXF4cuXbpg48aNGq+zLIu0tDRMnjwZDMPghRdeQM+ePREZGYl+/frhq6++0vvdevTogdTUVI3XhgwZgnfffZf7u7KyEvPnz0fHjh0RGxuLSZMmITs726g8dATUgkEIEQwhjSHi+6xYfB9Y37gl6KdLFaj9uynITSJCl3BPq362JVvTLDkmR99voas16n4qFvj9mgzrp3WgCUF4hGVZQKEwbF+VCnW//AJleTnEUdH/nBNu7hBFRkJ5rQB1R49CFBYGppkAFwAgkZjeFU8mw5YtWxATE4OAgAAAgFwux+TJk9GzZ0/s2rULEokEH374IaZMmYJffvkFIpEI06dPxxNPPIGVK1dCLpfjzJkzYBgG48ePx8WLF/Hzzz/jhx9+AAD4+Gi/RqZOnYq33noLb731Fjw9G+4Jx48fx/Xr1zF16lSoVCqEhYVh1apV8Pf3x8mTJ/Hyyy8jJCQE48ePN+n7AsDTTz8Nd3d3bNy4ET4+Pli3bh0eeeQRZGZmwt/f3+Tj8g0FGEJm5hgMQhyZIwcXfC+8A44zsP5cUQ1q5Squ4FwjV1m9m5klZ3IyN1gxdBB+czNDNaZQsfCQigQTzAuCQoGab781aFdVVRXkf/wBxtUV7N2mrYxsfT3qbt6EqqICIm/vZo/n8a9/AVL9Y54aO3jwIKL/7oJVU1ODkJAQbNiwAaK/7yc7duyASqXCRx99xJ1Xn376Kdq2bYvjx4+ja9euuHv3LoYPH46YmBgAQLt27bjje3p6QiwWIyQkRG86kpKSsHjxYuzevRtTpkwBAGzcuBF9+vRB69atAQD//e9/uf2joqJw6tQp7Ny50+QA47fffsMff/yBCxcuwNXVFQCwZMkS7Nu3D7t378aTTz5p0nH5iAIMIWrmRk8PA0L4zVEK73yf8cqeY0Qs1ZpmTrBi6BS3hgS0jTGMZgDf+P/p+eIA5ApAqQQkOoqAEglQU9OwnxUMGDCA6zJUWVmJtWvXYsqUKThw4ABatWqFnJwcXL16lQse1Gpra1FQUIAhQ4ZgypQpmDx5MhITEzFo0CCMHz++2YDifr6+vhg9ejS+//57TJkyBVVVVfjxxx/xzjvvcPusXr0aGzduxM2bN3Hv3j3I5XJ07tzZ5O+ek5OD6upqtG/fXut3ExIKMATtn6e+PaeSJIQYj++Fd4D/A+st2c3MnIKzuQVuU4MVQwMsQwLaxnxcNZ8Z9HzhAYmkoSXBAMriYrA1NRD5+IDxbNpdUFVdDfbuXbhPfgzi0FCDPtsYHh4eiI2N5f7u0qULWrduje+++w6vvvoqqqurER8fjxUrVjR5b2BgIICGFo3k5GQcOXIEO3bswP/+9z/88MMP6Nmzp1FpmTZtGpKSkpCfn4/jx49DJBLh4YcfBgBs374dS5YsweLFi9GrVy94enriiy++wJkzZ3Qej2GYJjPEKRp1XauurkZISAi2b9/e5L2+vr5GpZ3vKMAQovsePsYu1EQcD9UaGs5R8orvhXeA34tzWqKbGR8Lzsacu8YEWMYsWljVaPpher7wA8MwBndTErdsCUlMdMMAb2+vJi1QbFkZJO3bQ9yypWFjMMzEMAxEIhHu3bsHoCHg2LlzJ4KCguCtp4tWXFwc4uLiMG/ePIwaNQrbtm1Dz5494eLiApWBLXIJCQmIjIxEWloa0tPTMXHiRG48xokTJ9CrVy/MnDmT27+5VobAwEDcvn2b+7uqqkpjcHqXLl1QUlICiUSCyEjDFtt0VBRgCNnfUTQfppIklsfHwg9fOWJe8bnw3hhfB9ab283M0QvOxgZY6oC24E5tsxMQqlT//Nb0fHE8jEgEl4EDobp9G6qrBWCCg8G4u4G9Vwu2pAQiPz+4DEywWnBRX1/PFcIrKyuxevVqVFdXY8SIEQAaxkZ88cUXePLJJ/Hf//4XYWFhuHHjBn788Uc8++yzkMvl+PbbbzFixAiEhoYiLy8PV69exWOPPQYAaNWqFa5du4bz588jPDwcXl5e3HiHJnnBMJg6dSpWrlyJiooKvPnmm9y22NhYbN68GUeOHEFUVBR++OEHnD17Vm9gkJCQgLS0NIwYMQI+Pj5Yvnw5N7YEABITE9GzZ09Mnz4db7zxBlq3bo3i4mIcOnQIo0ePRteuXc3NXt6gAEOI7ntg8n02GmI8Ry/82JIj5xVfC++68C195nQzc/SCs7EBVuOAtrmWjMbvs/XzxRGuA0cgiY6G2yOPcOtgsGWlgIsrJO3bw2VgglXXwThy5Aji4uIAAF5eXmjbti1WrVrFLXzn4eGBnTt34s0338SMGTMgk8kQGhqKQYMGwdvbG/fu3cPly5exadMmlJeXIyQkBDNmzMD06dMBAGPHjsWPP/6ISZMmobKyEp9++ik3iFubKVOm4N1330WHDh3Qo0cP7vUnn3wS58+fR0pKChiGwcSJEzFjxgwcPnxY57HmzZuH69evY9q0afDx8cF///tfjRYMhmGwceNGvP3225g3bx7++usvBAcHo2/fvggKCjIrX/mGYc1d7pmYrbS0FHK53GLHU165Anl6Olo88ACqe/XCuNXnUVate7BWkKcUO2Z2opu2CRiGQVhYGG7dumX2yunG+OhoIbaeK9P6YBcxQFKXQF4XfoxlTj47W16Zy9S85mPBjwsudXQz07c+yqS1OSiuqtd57DBvF2yd0cnktNni3vHR0UK9AZauc9/Q97Esi/Frsq3+fDGnBdJa+SyVSu1eIMzPz9fbhcgQrEoF1e3bYGtqwHh4QBQSYpNuUcRxVVVVaYyh0YVaMATOUWajIcahVinDUV5ZD9+7npnazcwRpgk2hKnjeHS9j4Hm+2zxfHHkFkhHwIhEEIeF2TsZRIAowBAwdW2NI8xGQwwnlMKPLVBeWY+jFPxM6WYmlIoZUwOsxu/79UolKmsVqFeycBEzXFCpfr+1ny+O3lWNEGdF7WBCdN9DL6VfOKL83SC671nIp9loiOGEUvixBcor6zGk4Mc3xvzOA2N9mtwz1RypYkYdYG2d0Qk7ZnbC1hmdMD+xVbPBn6eLGCn9wuHhIka9goWKBWoVLG7L5NiaVYaUzbkNQaaVny+GtEASQviHAgwh+7tGSV0bldQlEGHeLgjylCLM2wVJXQL19kEm/CWUwo8tUF5Zh9ALfnyumDF1LIGxgfQX6TdxtZkg0prPF2NaIAkh/EJdpIRIy0PE0WajIfo5whoJfEF5ZXnmdj1zhHsQ36YJtvV4l+p6JXZf+Evn9sbjl6z1fKEWSP2c9XsT+zL0vKMAQ8h01OrQTcnx8a3ww2fWzCtHKChbgykFP74PCNeGLxUz9hjvkppxE8pm1irTFkRaOo9oDKFuDMNApVJprLNAiDWpVCoKMJyb8xV4nBFfCj+OwJJ55YgFZWswpuDnKAPC9bHn9WWPgc7pV6ua3ccWrQfUAqlbSEgIbt68CW9vbwoyiNWpVCpUVVWhZcuWBu3PqwDjwoUL2LVrF65evYry8nK8/PLL6N27N7e9trYWGzZswMmTJ1FVVYXg4GCMGjUKw4cP5/apr6/H+vXrkZGRAblcjvj4eMyaNQt+fn7cPmVlZfj666+Rk5MDNzc3JCYmYurUqRCL/3nA5eTkYP369SgsLESLFi2QlJSEwYMHa6R3//792L17NyoqKhAVFYWZM2eiTZs2Vssfo1G/VKdBwYXhaMpMyzCm4EczAZnHHovZNdcFDgAGxli/9YBaa3Vzd3dHy5Ytcfv2bbAsjUUh1sMwDZUJLVu2hLu7u0Hv4VWAUVdXh+joaAwdOhTvv/9+k+3r1q1DdnY2nnvuOQQFBSErKwurVq1CQEAAevbsye1z5swZvPjii/Dw8MDq1avxwQcfcMu/q1Qq/O9//4Ofnx/eeustlJeX4/PPP4dYLMbUqVMBACUlJXjnnXfw0EMP4bnnnkN2djZWrlwJPz8/bhn3jIwMrF+/HsnJyWjbti1+/PFHLFu2DB9//DF8fX1tk2G6UFmTEKuggvI/jCn42XstEkdu4bPHVMuGdIGTiICU/rZpPaDWWt3c3d0RbcVVtwkxFa8CjG7duqFbt246t+fm5iIxMRGdOjWsnjps2DAcPHgQeXl56NmzJ2pqanDkyBHMmzcPnTt3BgDMmTMH8+fPR25uLtq1a4dz587hxo0beP311+Hn54fo6GhMnjwZGzZswGOPPQaJRIKffvoJwcHBePLJJwEAERER+PPPP/Hjjz9yAcaePXvw4IMPYsiQIQCA5ORknDlzBj///DMmTJhgvUwyCtVmEGJJ9i4o840hBT97rUUilK5s9hrorK8LHACMfSDALvlIwQUhjoFXAUZz2rVrh9OnT2Po0KHw9/dHTk4Obt26henTpwMA8vPzoVQqERcXx72nZcuWCAwM5AKM3NxcREZGanSZ6tq1K1atWoXCwkLExMTg8uXLGscAgPj4eHzzzTcAAIVCgfz8fI1AQiQSIS4uDrm5uTrTL5fLIZfLub8ZhuGamix502REIjB/N2PQzdi61PlL+WxdfMhnlmWh1FXa+pvi7+2Ocj5oK9Sbmte69mcYBlJxM7XhYsaifcib68r29eT2dg8yjMnngbG+2JpVqnO8y6BYX4vP1jW7f0vdXeAC3PDswFYOcZ7z4d5BiDNyqABj5syZSE1NxTPPPAOxWAyGYTB79mw88MADAICKigpIJBJ4enpqvM/X1xcVFRXcPo2DC/V29Tb1f+/v5uTr64t79+6hvr4eMpkMKpWqyXH8/PxQVKR7cant27djy5Yt3N8xMTFYvnw5goKCDM0Cg9TV1OCulxfAsggNDbXosYl2lM+2Ye98dnX5E6iW69kuQXg4vwedyuoUeP/AJRy6eBtyJQupmMGwjiF4eUR7eLn+80iwZF6P6HwH6zMLdBaQR3YOR1hYmMU+b/GunIaC8X2vq7uybThXiUXjOlns88xhSD4vmhSEc8XHkVcia1LYbxPshTcmded+O0N/X0PsnheKDw5cwsGLt6FQspCIGTzUMQQvGXgsPnVnsve9gxBn41ABxr59+3D58mW88sorCAoKwsWLF7F69Wr4+/ujS5cu9k5esyZOnIixY8dyf6tvvKWlpVAoFBb7HGVZGeQyGfwB3Lp1y2LHJU0xDIPQ0FAUFxfTADsr4ks+94v0wtaKezoLyv0jvXh9zVXXK5G86VKTmv31mQU4+mcxvp7cUHC0dF4/Ee+Lo3+66awNnxbva9F8O5BdpLNrj4oF9mcXIaVXgMU+zxTGntMrJrXGVxlFOHa1kivsD4zxRUr/cFTdKUUVDPt9jW25SekVgJReARrBgvrztKmuVyI1owjpjdKZEOOL2f3t0zXNWvcOiURi8cpBQoTEYQKM+vp6bNy4Ef/5z3/QvXt3AEBUVBQKCgqwe/dudOnSBX5+flAoFKiurtZoxaisrORaG/z8/JCXl6dx7MrKSm6b+r/q1xrv4+7uDhcXF/j4+EAkEnEtHmraWkcak0qlkEqlWrdZ8sZXU6/AqYJKZOVdxOGLPhCLGIfse+xIaAYP27B3Pqf0C8OpwiqdMycl9wvj9XmQmnFT7yD11IybeHFwJADL5rWHVKR3QLiHVGSxz2JZFvJmFnBQKFmj5nO3JkPz2UMqwguJEXghMaJJy4D6/Yb8vuZMQtBcOnV3TSvFqcIqu86yZu97ByHOxmEmTlYoFFAqlU0eCCLRPw+m2NhYiMVinD9/ntteVFSEsrIytGvXDkDDOI7r169rBBBZWVlwd3dHREQEAKBt27Yax1Dvoz6GRCJBbGwssrOzue0qlQrZ2dncPvZSXa/E6/uv4UJxNcqr5SitlqO4qh5bs8qQsjkX1fVKu6aPEEemnjkpqUsgwrxdEOQpRZi3C5K6BCLVAaaoNWSQurWoB4RvndEJO2Z2wtYZnTA/sZXF88wZVn/WlXZ7/r6AYbOsEUKcA69aMGpra1FcXMz9XVJSgoKCAnh5eSEwMBAPPPAAvvvuO7i4uCAoKAgXLlzA0aNHuUHeHh4eGDp0KNavXw8vLy94eHhgzZo1aNeuHVfwj4+PR0REBD7//HNMmzYNFRUVSEtLw4gRI7jWheHDh+PAgQP47rvvMGTIEGRnZyMzMxMLFizg0jZ27Fh88cUXiI2NRZs2bbB3717U1dU1WSvD1r7KLEJRRR3aAGAazSLljNNoEv7hU59sUznqlJnGzOZkbdbOM2dc/dles3U1RrOsEULUeBVgXLlyBUuWLOH+Xr9+PQAgMTERc+fOxQsvvIDvv/8en376KWQyGYKCgvD444/joYce4t4zffp0MAyDDz74AAqFgltoT00kEmHBggVYtWoVFi5cCFdXVyQmJmLy5MncPsHBwViwYAHWrVuHvXv3okWLFnjmmWe4KWoBoH///rh79y42b96MiooKREdH47XXXtPbRcoWjuXfhVjHw4Nu8MQehDJdqDaOElwAzlGzr+aMqz/b+/flQ4BDCOEPhqVOiXZXWlqqMX2tqViWxfg12XC9fQuDC8/gjrsv9kX31dgnyFOKHTM70Q3eQhiGQVhYGG7dukX9e7XQ1SdbxABR/m4G98mmfLaMj44W6q3ZT+oSiBcHR1okr+1dkFQHtvoWAbRnGq1xThvy+1qzBXvS2hwUV9Xr3B7q7YJtM2w7e5e17h1SqZQGeROiB69aMIh51DVY+m6hQqmhJI6BVr7mF2vX7POptUpXV7bqeiU+OlrIizRamqV/X2MDMGfsmkYI0Y4CDIEZGOuDzOKbDX/cV1tDN3hia9Qnm1/Ug9Sbq9k3RXOL29lzBqHGwQVf02gJlvh9zQkSnbFrGiFEOwowBCalXziu5VzF/ZVOdIMntkZ9svnJWoPUHaG1yhHSaC5zfl9zAzBrBrCEEMdCAYbAeLqI8dboaJwqPYeceimCPKV2vcFT4dF52XvQKWmeJfPeEVqrHCGNlmTs72uJAMxRZ1kjhFgWBRgC5C6VoG+0D0bFxGDuoM42/3w+9cMm9kV9sp2DI7RWOUIa7c3SAZiz5iMhhAIMYfv7QWnLWXeE3seZGIf6ZDsHR2itcoQ02hMFYIQQS3KYlbyJ4ex576eVXEljjr7yNTHcwFgfiHTce/jSWuUIabQXCsAIIZZELRgCZo/1ApytjzNpHvXJdg6O0FplShqd6ZylLo2EEEuhAEOIqI8z4Sn63YXLkjMIWeseYWganXUcmSMEiYQQx0ABhpDZuAWDmtgJcW7mTpFqi0J9c2l05nFkNM0sIcRSKMAQIjsW4KmJnViKI7Z0OWKarcWW6y9YMo3OsFaGPtSlkRBiCRRgCJnth2BQEzsxi65a7Nn9W9o7aTo5a3caS+JToZ7Gkf2DggtCiKkowBAk+z0UqImdmKq5Wuzd80LtljZdnLk7jSXxpVBP48gIIcQyKMAQMjvMIgVQEzsxTXO12B8cuISUXgF2SZsufKp5d1R8KtTTODJCCLEMWgdDiHj07KMHMTFUc7XYBy/etml6DGFIzTvRj2+FelorgxBCzEcBhpDZqQWDEGMZVIutZO2ytosuxtS8E/34VKhP6ReOKH+3JumhcWSEEGI4CjCEiFoNiIMxpBZbIuZX1xS+1bw7Mj4V6mn1eUIIMR+NwRA0qjkljqO5KY4f6hhi+0Q1g6Zltgxtk0OIGWBga1+7TA6hHkf2wqCGH5aCROuisXqECA8FGEJEN2rigPROcRzghpdGtEfVnVL7JVALmpbZcjxdxFx+qaf8Pfb3GBZbBhnmTjtMhWXD0PTOhAgbBRhCRn2/iQPRN8Xx7P4t4eUqQZW9E3kfmpbZcvgw5a+paaDCsnH48FsTQqyLAgxCCG/omuKYzzXCNC2zZfBhyl9T0kCFZePx4bcmhFgXDfIWMJq9hjgyRyyoO2Ka+YIPU/6akgZDCstEEx9+a0KIdVGAIUQWKORQcEIIsRU+TPlrahqosGwcPvzWhBDroy5SQmbk/Zn6ERNC7IEPU/6akgZbr0IuhC54fPitCSHWRwGGEJlwY6Z+xIQQe+LDlL/GpsEWhWUhVvzw4bcmhFgXdZESMiOamKkfMSHEnviw2J4pabDmKuTqip+t58pQXFWPsmoFiqvqsTWrDCmbc1FdrzT52PbEh9+aEGJdFGAIkQm1ZdSPmBBiT3xYQduUNFizsCzUih8+/NaEEOuiLlJCZmALhq37ERNCiDZ8mPLX2DRYcy0UQyp+5ieafHi74sNvTQixHgowCA26I4TwDh/uN4amwRqFZWeq+HH09BNCmqIuUoJm+BgMa/YjJvZHUz4SYhuWKixTxQ8hxJHxqgXjwoUL2LVrF65evYry8nK8/PLL6N27t8Y+N27cwIYNG3DhwgWoVCpERETgpZdeQmBgIACgvr4e69evR0ZGBuRyOeLj4zFr1iz4+flxxygrK8PXX3+NnJwcuLm5ITExEVOnToVY/E9Tdk5ODtavX4/CwkK0aNECSUlJGDx4sEZa9u/fj927d6OiogJRUVGYOXMm2rRpY7X8MZgJD5yUfuE4VSjDtfJajZk9aNCd4xLi7DOEOBOabYkQ4qh41YJRV1eH6OhoPP3001q3FxcX44033kDLli2xePFivPfee0hKSoJUKuX2WbduHU6fPo0XX3wRS5YsQXl5OT744ANuu0qlwv/+9z8oFAq89dZbmDt3Ln755Rds2rSJ26ekpATvvPMOOnXqhHfffRdjxozBypUrcfbsWW6fjIwMrF+/Ho888giWL1+OqKgoLFu2DJWVlZbPGFMZUWtNg+6ERaizzxDiTGi2JUKIo+JVC0a3bt3QrVs3ndvT0tLQrVs3PPHEE9xroaGh3P/X1NTgyJEjmDdvHjp37gwAmDNnDubPn4/c3Fy0a9cO586dw40bN/D666/Dz88P0dHRmDx5MjZs2IDHHnsMEokEP/30E4KDg/Hkk08CACIiIvDnn3/ixx9/RNeuXQEAe/bswYMPPoghQ4YAAJKTk3HmzBn8/PPPmDBhgoVzxkgmNpnToDvhMGT2mfmJreySNkKIYaw5gJwQQqyJVy0Y+qhUKpw5cwZhYWFYtmwZZs2ahddeew0nTpzg9snPz4dSqURcXBz3WsuWLREYGIjc3FwAQG5uLiIjIzW6THXt2hX37t1DYWEhAODy5csaxwCA+Ph47hgKhQL5+fka+4hEIsTFxXH78IE5/e4puHBsNO0wIcKgrvjZOqMTdszshK0zOmF+YisKLgghvMarFgx97t69i9raWuzcuROTJ0/GtGnTcPbsWXzwwQdYtGgRHnjgAVRUVEAikcDT01Pjvb6+vqioqAAAVFRUaAQX6u3qber/ql9rvM+9e/dQX18PmUwGlUrV5Dh+fn4oKtI9L7lcLodcLuf+ZhgG7u7u3P9bCiMSgQFj8eOSptT5y6d8ZlkWSm2dthtR/L2dT+nWh4/5LFSU17ZhSj7z/TfhY8s3nc+E2IfDBBiqv6fr69mzJ8aOHQsAiI6OxqVLl/DTTz/hgQcesGfyDLJ9+3Zs2bKF+zsmJgbLly9HUFCQRT9H4eaGci8vgNXsQkash2/57OryJ1At17NdgvBwx+u/rS2f+VioEQK+ndNC5ej5LKtT4P0Dl3Do4m3IlSykYgbDOobg5RHt4eXKnyKGo+czIY6GP1d/M3x8fCAWixEREaHxesuWLXHp0iUADS0ICoUC1dXVGq0YlZWVXGuDn58f8vLyNI6hHpjdeJ/7B2tXVlbC3d0dLi4u8PHxgUgk4lo81LS1jjQ2ceJELjgC/qlRKS0thUKh0J8BRlBVVqJeJoO3qyuKi4tpilIrYhgGoaGhvMvnfpFe2FpxT+fsM/0jvXDr1i3bJ8xE9+dzdb0SqRlFSL9aCYWShUTMICHGF7P7O1e/dGsEV3w9p4VGCPlcXa9E8qZLTcZ7rc8swNE/i/H15PZNrkdbVwhYK58lEonFKwcJERKHCTAkEglat27dpAvSrVu3uClqY2NjIRaLcf78efTt2xcAUFRUhLKyMrRr1w4A0K5dO2zbtg2VlZVcN6isrCy4u7tzwUvbtm3xxx9/aHxOVlYWdwyJRILY2FhkZ2dz0+iqVCpkZ2dj5MiROr+DVCrVmPGqMUve+FiWBQsWYBsWYXLUh5cj4Vs+p/QLw6nCKp3TDif3C+NVeg3FsixkdQqkbM5tUqjZmlWKU4VV+Ergs57Zavphvp3TQuXI+ZyacVPvZBKpGTcxP7EVL6bMduR8JsQR8WqQd21tLQoKClBQUACgYbrYgoIClJWVAQDGjRuHjIwMHDp0CMXFxdi/fz9Onz6NESNGAAA8PDwwdOhQrF+/HtnZ2cjPz8eKFSvQrl07LjiIj49HREQEPv/8cxQUFODs2bNIS0vDiBEjuML/8OHDUVJSgu+++w43b97EgQMHkJmZiTFjxnBpHTt2LA4fPoxffvkFN27cwKpVq1BXV9dkrQy7oO4iTk/I0w4bMkOWUNH0w4RPDJlMgs5ZQpwTw/IopM/JycGSJUuavJ6YmIi5c+cCAI4cOYIdO3bgr7/+Qnh4OB577DH06tWL21e90N7x48ehUCi0LrRXWlqKVatWIScnB66urkhMTMS0adOaLLS3bt063LhxQ+9Ce7t27UJFRQWio6MxY8YMtG3b1ujvXVpaqjH421yqu3dRv307fPwDIB8/jmptrIhhGISFheHWrVu8zmdHH6fQOJ8nrslGcVW9zn3DvF2wdUYnG6bOdj46Woit58q0FupEDJDUJdDs6Ycd5Zx2dI6ezyzLYvyabJRV6+7eG+QpRWJrX2zLsu45q4+18lkqlVIXKUL04FWA4awsHWCwVVWo27bNpADD0QuitubohQRHoc7noqIijFt9vtlCzY6ZnQR5Hk9am2P14IrOadsQQj43dz6GersAgF0rBCjAIMQ+HGYMBjGFYTdTPvSPJcQQDMNAItLfs1MsYgQZXLAsC4VKV4eUBgoVa5dKAiFUTAjhO9jawFgfbM0q0zmZREKMN365Utl0YyP2OmcJIdZFAYYQGXGjVvePbTpgtgynCmWCHzBLHE9zhZqBsT62T5QN8C24EkLFhBC+gz2l9AvHqUKZzskkZvdvifSrVXqPIdQKAUKcHa8GeRMLM6A52JkHzBLHlNIvHFH+bhDdVyZRF2pS+jne+h6GGhjr0+R7q9kyuBLCwF0hfAd7M2QyCb6cs4QQ26IAw8kZMgsIIXwi5BmymsOX4EoIFRNC+A584OkixvzEVtg6oxN2zOyErTM6YX5iK+465Ms5SwixLeoiJWDNDWjjc59uQvRRF2rmJzpX33l1cPVVZhHS8+9CoWIhETFIsHG3HkMqJuYn2iQpJhPCd+AbbdchX85ZQohtUYAhRAYWtvjWp5sQUzjb+Wnv4EoIFRNC+A6OxN7nLCHE9qiLlJAZMAaD+scS4rjsUVATQsWEEL6Do6I8JcQ5UIAhREbcwKl/LCHaOeraBLYghIoJIXwHQgjhK+oiJWQGlI+ofywh/6BpSw3T3PSkjlAxIYTvQAghfEUBhhAZ2QRN/WMJoTVhjCGEigkhfAdCCOErCjCEzIQuHsYGFxSQEKEwZNrS+Ymt7JI2PhJCxYQQvgMhhPARBRjEaNSNhAgRTVtqOiEUzIXwHQghhC8owBA4Sw9UpW4kRIho2lLnIsTfUYjfiRDiuCjAECIrPmSoGwkRIpq2VPiE2PIqxO90PwqcCHFMFGAIHctaNOCgbiREqAbG+mBrVpnGjEJqNG2pYxNiy6sQv5OaMwROhAgdrYMhRFaq7TGmGwkhjobWhBEuQ1peHY0QvxPwT+C09VwZiqvqUVatQHFVPbZmlSFlcy6q65X2TiIhxAAUYAidBQv71I2ECJl62tKkLoEI83ZBkKcUYd4uSOoSiFQHrg0mhrW8OhohfidAuIETIc7G5C5SKpUKmZmZyMnJQWVlJSZPnozIyEjU1NTg/PnzaN++Pfz8/CyYVGIwKxbwqRuJsDl7f2eatlR4hDiAX4jfSY264RIiDCYFGNXV1Xj77beRl5cHNzc31NbWYtSoUQAANzc3rF27FoMGDcLUqVMtmlhif7T6rfBQf2ftHK1gRrQTYsurEL8TIOzAiRBnY1IXqQ0bNqCwsBD/93//h88++0zzgCIR+vbtiz/++MMiCST8Qt1IhIX6OxNr48OYrIGxPk3G1qg5asurEL+TUAMnQpyRSS0YJ0+exMiRI9GlSxdUVVU12R4WFoZffvnF3LQRS7DCw526kQgHTTtMrIFvrWJCbHkV4ncCqBsuIUJhUgtGTU0NgoODdW5XKpVQKqnm025sWOCn4MKxCXWgKLEfPraKCbHlVYjfCaDZ3AgRCpNaMEJDQ3H16lWd28+dO4eIiAiTE0UsiAfdEwg/UX9nYg18bRXjc8urqenh83cylTpw+iqzCOn5d6FQsZCIGCTQuDBCHIpJAcbQoUOxYcMGdOrUCZ07d+Zel8vl2LJlC86ePYvZs2dbLJHESAJ4yBDro/7OxBocYRYgPpzT1fVKLN6VgwPZRZArze9GxofvZClCDJwIcTYmBRijR49GYWEhPvnkE3h4eAAAPv30U1RVVUGlUmHYsGEYOnSoRRNKTEQtGEQPR+jvTAUMx0GtYobhVuG+b/yEEFbhtjRnPk8IcWQmBRgMw+CZZ57B4MGD8dtvv+HWrVtgWRYhISHo168fHnjgAUunkxiDbsjEQHwdKHr/IGGpWIQRne/giXhfeEhpfVC+olYxw/C1GxkhhFiKyQvtAUCHDh3QoUMHS6WFEGJjfOzvzNXu3lcAW59ZgKN/ulHtLs85QquYvTlCNzJCCDGHWQEGIcTx8a2/M9XuOja+torxBXUjI4Q4A5MCjLlz5zZ742MYpskifMQOaAwGMQIfCjRUu+vY+NgqxifUjYwQ4gxMCjAeeOCBJjc/lUqF0tJSXLp0Ca1atUJMTIxFEkhMQA8m4qCodlcY+NYqxjfUjYwQInQmt2DoUlBQgGXLliEhIcHkRBELohYM4kCodld46LdqirqREUKEzuJjMKKjo/HQQw9hw4YN6NKli1HvvXDhAnbt2oWrV6+ivLwcL7/8Mnr37q1136+++gqHDh3C9OnTMWbMGO51mUyGNWvW4PTp02AYBn369MGMGTPg5ubG7XPt2jWsXr0aV65cgY+PD0aOHInx48drHD8zMxObNm1CaWkpQkNDMW3aNHTv3p3bzrIsNm/ejMOHD6O6uhodOnTArFmzEBYWZtR3tgp6oBMHRrW7/EOtEJbl6SLG15PbY8O5SuzPLoJCSd3ICCHCYpVB3r6+vrhx44bR76urq0N0dDSGDh2K999/X+d+J06cwOXLl+Hv799k26effory8nIsXLgQSqUSK1asQGpqKubNmwcAqKmpwVtvvYW4uDgkJyfj+vXr+PLLL+Hp6Ylhw4YBAC5duoRPPvkEU6dORffu3ZGeno733nsPy5cvR2RkJABg586d2LdvH+bOnYvg4GBs2rQJy5Ytw4cffggXFxejv7vVUAsGcTB6a3cDqHbXVqrrlUjNuMlNFWzuQnBEk6eLGIvGdUJKrwCoVCoK4AghgmLxCeWrqqpw5MgRtGjRwuj3duvWDVOmTNHZagEAd+7cwZo1a/D8889DItGMj27cuIGzZ8/imWeeQdu2bdGhQwfMnDkTGRkZuHPnDgAgPT0dCoUCc+bMQatWrTBgwACMGjUKe/bs4Y6zd+9edO3aFePGjUNERASmTJmC2NhY7N+/H0BDbd7evXsxadIk9OrVC1FRUXj22WdRXl6OkydPGv29LY0eVMSRqQcJJ3UJRJi3C4I8pQjzccH0ftH46rH2VLi1AVmdAsmbLmHruTIUV9WjrFqB4qp6bM0qQ8rmXFTXK+2dREGhezYhRGhMasFYsmSJ1tdrampw8+ZNKBQKPPvss2YlTBuVSoXPPvsM48aNQ6tWTaepzM3NhaenJ1q3bs29FhcXB4ZhkJeXh969eyM3NxcdO3bUCE7i4+Oxc+dOyGQyeHl5ITc3F2PHjtU4dnx8PBc8lJSUoKKiQqMLmIeHB9q0aYPc3FwMGDBAa/rlcjnkcjn3N8MwcHd35/7fkhgw//xXy7Gpy4NlqPOQ8tKyvFwleHFwJF4c3HCuikQihIaGori4GCxPWuWEeg0xDIP3D1zSO1Xw15m3MH8wTRVsDrp32AblMyH2YVKAoevBGhQUhLi4OAwZMgQtW7Y0O3H327lzJ8RiMUaNGqV1e0VFBXx8NPtni8VieHl5oaKigtsnODhYYx8/Pz9um3pfX19fjX18fX01jqF+Tdc+2mzfvh1btmzh/o6JicHy5csRFBSk8z2mKvX2BlgWISHBEHl6AmiolXz/wCUcungbciULqZjBsI4heHlEe3i50pIo5ggNDbV3EpyCvfPZWa6hQxcv6J0qOOO6DO/yYbyZANj7nAaEGyw3xod8JsSZmPREXLx4sYWT0bz8/Hzs3bsXy5cvd9gb4cSJEzVaRtTfo7S0FAqFwqKfVSuTwcvTE7dv3wbc3VFdr0Typqa1kg2rIxfj68nU9cQUDMPwrmZdiPiQz850DcmV+vO4rl6BoqIih70X84G9z+mGMTZFSL9a2TDIXMwgIcYXs/sbN8aG78GJtfJZIpFYpXKQEKFwmCq3ixcv4u7du5gzZw73mkqlwvr167F371588cUX8PPzw927dzXep1QqIZPJuFYKPz+/Jq0M6r8b71NZWamxT2VlpcZ29WuNB5pXVlYiOjpa53eQSqWQSqVat1nrAcOyLMCySM24qbfLQ2rGTVod2Qwsy1KAYQP2zGdnuYYYhoFUrL/AKBY1bKdz3nz2OKer65VI2Zzb5HzemlWKU4VV+OqxdnqDjOp6Jb7KLHKoCQDoHk2IbRkUYBw9etSkgycmWm653UGDBiEuLk7jtWXLlmHQoEEYMmQIAKBdu3aorq5Gfn4+YmNjAQDZ2dlgWRZt2rTh9tm4cSMUCgU3DiMrKwvh4eHw8vLi9jl//rzG9LdZWVlo27YtACA4OBh+fn44f/48F1DU1NQgLy8Pw4cPt9h3toi/b6i0OjIh5nGma2hYxxCszyygqYIF6qvMIr3B8leZRTqDZd3BSRlOFcqaDU4IIc7BoABjxYoVJh3c2ACjtrYWxcXF3N8lJSUoKCiAl5cXAgMD4e3trbG/RCKBn58fwsMbpq2MiIhA165dkZqaiuTkZCgUCqxZswb9+/dHQEAAACAhIQE//PADVq5cifHjx6OwsBD79u3D9OnTueOOHj0aixcvxu7du9G9e3ccP34cV65cQUpKCoCGGr7Ro0dj27ZtCAsLQ3BwMNLS0uDv749evXqZlFcW16jJmlZHJsQ8znYNvTyiPY7+WUwLwQmUOcGyOcEJIcR5GBRgfP7559ZOBwDgypUrGjNUrV+/HkBDoKJv9fDGnn/+eaxevRpLly7lFtqbOXMmt93DwwMLFy7E6tWrsWDBAnh7eyMpKYlbAwMA2rdvj+effx5paWnYuHEjwsLC8J///IdbAwMAxo8fj7q6OqSmpqKmpgYdOnTAa6+9xq81MADg7wIPrY5MiOmEfg3dHxh5uUrw9eT2SM24ifT8u1CoaCE4oTA3WHamljxCiOkMCjBsNZCpU6dO2Lx5s8H7f/HFF01e8/Ly4hbV0yUqKgpLly7Vu0+/fv3Qr18/ndsZhsHkyZMxefJkwxJra/c9F/i8OrJQan2JsPH5GjKFrn70s/s3zADo6SLG/MRWmJ9I16iQmBMsO1tLHiHEdA4zyJuYhkVDrKF3dWQ7dHlwxEGCxLnx7RoyR3P96HfP05zSkwqLwmJqsCz0ljxCiOWYHGBUVFTgyJEjyM/Px71796C6r1aDYRi88cYbZieQmOi+G7x6deSvMovs3uWBBgkSR8Sna8hczfWj/+DAJaT0CrBL2oj1mRMsC60ljxBiHSYFGNeuXcPixYtRX1+P8PBwXL9+HREREaipqcGdO3cQEhKCFi1aWDqtxBSNpuXjS5cHGiRIHBVfriFzNdeP/uDF2xRgCJg5wTLfWvIc+TokRMhMCjC+//57uLm54b333oOLiwuSk5MxY8YMdO7cGZmZmVi1ahWef/55S6eVGEX/DdeeN2QaJEiEwFELNQb1o1fSmgFCZ2qwzIeWPOpiSwj/mRRg/Pnnnxg/fjwCAwMhk8kAgOsi1a9fP/z555/49ttvNWaEInbCs0ICDRIkxL4M6UcvETf0o6cgwzkYe6+1Z0sedbElxDHof8rowLIsfH19ATRM+yoSibhAAwAiIyORn59vmRQS06hv+DwrINAgQULsb2CsD0Q6LjERAzzUMcS2CSIOy9b3akO62BJC7M+kACM4OBglJSUNBxCJEBwcjPPnz3PbL126BE9PT8ukkAhOc4UbGiRIiHWl9AtHlL9bk+tQxADRAW54aUR7+ySMkGYY0sWWEGJ/JnWR6tKlC3777Tc8/vjjAICHHnoI3377LUpKSsCyLHJycvDwww9bNKHESDxuAODbIEFiXdTdjX/09aOf3b8lvFwlqLJ3Igm5jyldbKmbHyH2YXCAIZPJ4OXlBQCYNGkSEhISoFAoIJFIMGbMGNTV1eH333+HSCRCUlISJk2aZLVEE8fGh0GCxLpoECb/6epHT8Eg4StDu9jWyFXc/UepYuHq8if6RXohpV8Y3X8IsRGGNTC8nzp1Krp164aBAweiR48ekEql1k6b0ygtLYVcLrfoMevS0uAldUH9sAfB/D1ehq8cuYabYRiEhYXh1q1bVFP2N12DMEUMEOXvZtIgTMpn26G8tg3KZ9N8dLRQ7zoc4zoF4FxRjUXvP9pIpVIEBQWZfRxChMrgMRh9+/bF+fPn8dFHHyE5ORkrVqzA+fPn6cZIzOaowQXRjgZhEkKsRe/4IX83AAzdfwjhAYO7SD3//POor6/HiRMnkJ6ejvT0dBw9ehR+fn4YMGAAEhISEBsba820EqPwcxYpInxCXufEkVvbCBGC5rrY/mvDn4K9/xDiSIwa5O3i4oKEhAQkJCRAJpMhMzMT6enp+PHHH/Hjjz8iLCwMAwcOREJCAkJCaJpDQpyNENc5ofEkwuRI5yDRpGv8kBDvP4Q4KpNmkQIALy8vPPTQQ3jooYdw584dpKen4/jx49i8eTM2b96Mtm3b4q233rJkWokx1PdOasEgNiS0dU5oUS9hoWBReBrfS4R2/yHEkZm0Dsb9AgICMG7cOMydOxc9e/YEAFy+fNkShyaEOBghrXNC40mEQx0sbj1XhuKqepRVK1BcVY+tWWVI2ZyL6nqlvZNILEBI9x9CHJnJLRhqZWVlXOvF9evXAQDt2rXDwIEDzU4cMQPV0BA7EdI6J0IeT+JsDAkW5ye2skvaiOUI6f5DiCMzKcC4e/cuN/4iNzcXABAeHo7JkycjISEBwcHBFk0kIcRxCGWdE+rPLSwULDoHbfcfVxcJ+kd6IZnWwSDEZgwOMGpra3HixAkcP34c58+fh1KphJ+fH8aMGUMzSPERQ7NIEfvRNQjTkVB/buGgYNG5NL7/AA0VoLTeCCG2ZXCAkZycjPr6eri5uXEzSXXu3BmiZh7AhBDn5sgFtoGxPnoX9aL+3I6BgkXnRb8pIfZhcIARFxeHhIQE9OzZEy4uLtZME7EI41owqOaOkKaoP7dwULBICCG2Y3CA8corr1gzHcQOaMpG50JBpPGEMp6EULBICCG2ZPYsUoSnmlkHg+b3dw4URJpPCONJCAWLhBBiSxRgOCmaslH4KIi0PAouHBsFi4QQYhs0QluomnlwGjJlI3FstEgcIbpZMrig2YkIIUQTtWA4IZqy0TnQvP+EWA91PySEEN0owBAoRs8sUjRlo/BREEmI9VD3Q0II0c/kLlI1NTXYsWMHli1bhldeeQV5eXkAAJlMhj179qC4uNhiiSSWNzDWById5UpDpmykLgH8RkGk/dC1IXzU/dB4dF0Q4lxMasH466+/sHjxYpSVlSEsLAw3b95EbW0tAMDLywsHDx5EaWkpZsyYYdHEEiMwTEPrhY6builTNlKXAMdC8/7bDl0bzoW6HxqGrgtCnJdJAca3336Le/fu4b333oOPjw+Sk5M1tvfq1QtnzpyxSAKJdRg7ZSN1CXA8NO+/bdC14Vyo+6Fh6LogxLmZFGBkZWVhzJgxiIiIQFVVVZPtISEh+Ouvv8xOHDEDA4CF3pW8jZmykaa1dTw0779t0LXhXKj7oWHouiDEuZkUYNTX18PHR3f3inv37pmUmAsXLmDXrl24evUqysvL8fLLL6N3794AAIVCgbS0NPzxxx8oKSmBh4cH4uLiMHXqVAQEBHDHkMlkWLNmDU6fPg2GYdCnTx/MmDEDbm5u3D7Xrl3D6tWrceXKFfj4+GDkyJEYP368RloyMzOxadMmlJaWIjQ0FNOmTUP37t257SzLYvPmzTh8+DCqq6vRoUMHzJo1C2FhYSZ9d3tr7mFIXQIcE837b310bTgf6n7YPLouCHFuJg3yjoiIwMWLF3VuP3nyJKKjo40+bl1dHaKjo/H000832VZfX4+rV68iKSkJy5cvx0svvYSioiK8++67Gvt9+umnKCwsxMKFC7FgwQJcvHgRqamp3Paamhq89dZbCAwMxDvvvIMnnngCP/zwAw4dOsTtc+nSJXzyyScYOnQoli9fjl69euG9997D9evXuX127tyJffv2ITk5GW+//TZcXV2xbNky1NfXG/29reLvgqQlhtUZ0yWA8BcFF5ZH14ZzSukXjih/tyYTZVD3wwZ0XRBCTAowRo8ejePHj2PHjh2oqakBAKhUKhQXF+Ozzz5Dbm4uxowZY/Rxu3XrhilTpnCtFo15eHjg9ddfR//+/REeHo527dph5syZyM/PR1lZGQDgxo0bOHv2LJ555hm0bdsWHTp0wMyZM5GRkYE7d+4AANLT06FQKDBnzhy0atUKAwYMwKhRo7Bnzx7us/bu3YuuXbti3LhxiIiIwJQpUxAbG4v9+/cDaLh57t27F5MmTUKvXr0QFRWFZ599FuXl5Th58qTR35vvqEsAIdrRteGc1N0Pk7oEIszbBUGeUoR5uyCpSyBSaWwBXReEENO6SA0aNAhlZWXYtGkT0tLSAABvv/02WJaFSCTC448/rjVIsLSamhowDAMPDw8AQG5uLjw9PdG6dWtun7i4ODAMg7y8PPTu3Ru5ubno2LEjJJJ/vnp8fDx27twJmUwGLy8v5ObmYuzYsRqfFR8fzwUPJSUlqKioQJcuXbjtHh4eaNOmDXJzczFgwABrfm0D6V4HwxTUJYAQ7ejacE7U/VA/ui4IcW4mL7Q3adIkDBo0CL/99huKi4vBsixCQkLQp08fhISEWDKNWtXX12PDhg0YMGAAF2BUVFQ0GRsiFovh5eWFiooKbp/g4GCNffz8/Lht6n19fX019vH19dU4hvo1XftoI5fLIZfLub8ZhoG7uzv3/xbF/PMZljj27P4tdc9IFOCG2f1bOuUDVv2dnfG72xKf85lv14a5hV0+5zVfmZJXQs9nvlwXQs9nQvjKrJW8AwMDm9T024JCocBHH30EAJg1a5bNP99U27dvx5YtW7i/Y2JisHz5cgQFBVn8s+74+kL51x0EBQbCxUIDz3fPC8UHBy7h4MXbUChZSMQMHuoYgpdGtIeXq3MvCh8aGmrvJDgFvuazva8NWZ0C7x+4hEMXb0OuZCEVMxjWMQQvm/H5fM1roTEnn/necmLv66IxOp8JsS2TrvBXX30VAwYMQL9+/dCiRQtLp0kvdXBRVlaGN954g2u9ABpaIu7evauxv1KphEwm41op/Pz8mrQyqP9uvE9lZaXGPpWVlRrb1a/5+/tr7KNvcPvEiRM1AjL1g6G0tBQKhULf1zZa3d278Pz72CKJ5W7kKb0CkNIrQOPBVnWnFE0nK3YODMMgNDSUa8Uj1uEI+Wyva6O6XonkTZeaTAm6PrMAR/8sxteT2xs1JsAR8loITM3n6nolUjOKkH61kiu0J8T4YnZ/fk49be9nhrXOZ4lEYpXKQUKEwqSSp0gkwrfffovvvvsObdu2xYABA9C3b1+u4G0t6uCiuLgYixYtgre3t8b2du3aobq6Gvn5+YiNjQUAZGdng2VZtGnThttn48aNUCgU3DiMrKwshIeHw8vLi9vn/PnzGgPVs7Ky0LZtWwBAcHAw/Pz8cP78eS6gqKmpQV5eHoYPH64z/VKpFFKpVOs2az3IWZXKesemwgeHZWlGFFtwlHy2ZRpTM27qXW8gNeOmSesNOEpeOzpj8ln34nWlOFVYxfvF6+x5PtH5TIhtmTSL1LJly/DFF19g6tSpUCgUWLt2Lf79739jyZIlOHToUJNWBEPV1taioKAABQUFABoGUxcUFKCsrAwKhQIffvgh8vPz8dxzz0GlUqGiogIVFRVc7X9ERAS6du2K1NRU5OXl4c8//8SaNWvQv39/bq2MhIQESCQSrFy5EoWFhcjIyMC+ffs0WhZGjx6Nc+fOYffu3bh58yY2b96MK1euYOTIkQAaakRGjx6Nbdu24dSpU7h+/To+//xz+Pv7o1evXiZ9d0IIMYUh6w0QYTBk8TpCCOEDhrVASH/79m1kZGQgMzMT165dg0gkQufOnfF///d/Rh0nJycHS5YsafJ6YmIiHn30UTz77LNa37do0SJ06tQJQMNCe6tXr9ZYaG/mzJk6F9rz9vbGyJEjMWHCBI1jZmZmIi0tDaWlpQgLC9O50N6hQ4dQU1ODDh064Omnn0Z4uPHzn5eWlmoM/raE+t274VkvR12/vhCZkCZt+N7f1x4YhkFYWBhu3bpFtWNWRPmsHcuyGL8mG2XVurtYBnlKsWNmJ4OvXcpr2zAlnyetzUFxle61lsK8XbB1RidLJVEQrHU+S6VS6iJFiB4WCTDUWJbF4cOH8e2336K2thabNm2y1KEFjc8BRnW9El9lFuFY/l0oVCpIRCIMjPVBSj9+9ve1NSqM2Qbls27NFTpDvV2wzYhCJ+W1bRibz9YIJp0BBRiE2IdFRv/m5uYiMzMTv/32G+7cuQM3NzckJCRY4tDEZOavg6G7v28ZThXKeN/flzgvZ2pto/UGrI8P5xMtXkcIcSQmBxj5+flct6iysjK4uLigR48e6N+/P7p166ZzMDNxHIb09zVl8Cgh1uCsrW0p/cJ1rzfg74aUfpbpIuls+Hg+UTBJCHEUJgUYzz33HEpKSiCRSNCtWzdMmzYNPXr0gKurq6XTR0zFmN+CYcjg0fmJJh+eEItx5tY2TxcxvnqsHb7KLEJ6/l0oVCwkIgYJThBcWQtfzycKJgkhjsKkAKNly5Z49NFH0atXL24laiIsLMtCodIVXjRQqFhedB0gxNlb2zxdxJif2ArzE/nRncfR8fV8omCSEOIoTAowFixYYOl0EEtTly9MbMGg/r7EkVBr2z/omjQfn88nCiYJIY7AoACjrKwMABAYGKjxd3PU+xPHRP19iSOg1jZiSY50Ptn78wkhRBeDAoy5c+cCADZs2ACJRML93RyaptaOLPDgof6+xBFQaxuxJDqfCCHEfAYFGP/+978BAGKxWONvImzU35c4CmptI5ZE5xMhhJjHoABj8ODBev8mfGT+LFIA9fcljoFa24gl0flECCHm0d8OrMOKFStw+fJlndvz8vKwYsUKkxNF+ImCC8JX6ta2pC6BCPN2QZCnFGHeLkjqEohUAU9RS6yDzidCCDGPSbNIHT16FF26dEHbtm21bi8pKcHRo0cxZ84csxJHzGCBdTBsjVpI+MXRfg9qbSOWROcTIYSYzuSVvPW5c+cOXFxcrHFoIjB8XC3XmQnl96DCILEkOp8IIcQ4BgcYJ0+exMmTJ7m/Dx06hKysrCb71dTU4Pz582jTpo1lUkhMY+Y6GLbA19VynRX9HkQfqsUnhBBiKIMDjBs3buC3337j/r58+TLy8/M19mEYBq6urujYsSOefPJJy6WSCBJfV8t1VvR7kPsJpUWLEEKIbRkcYEycOBETJ04EAEyePBn//ve/kZCQYLWEETM5QE0jn1fLdUb0e5DGqEWLEEKIqUyaRWrTpk0UXBCzGLNaLrE++j3I/VIzmm/RIoQQQrQxKcDIz8/HgQMHdG4/cOAACgoKTE0TsQDGQutgWAutlssv9HuQ+6VfrdTbovXjhTuorlfaNE2EEEIcg0kBRlpaGs6fP69ze3Z2NtLS0kxOFHEOA2N9INJRXqXVcm2Pfg+ixrIsFEr9lRM1chVSNudSkEEIIaQJk1swOnTooHN7x44dceXKFZMTRSzAAdbBSOkXjih/tyaFWlot1z7o9yBqDMNAIm6+tYq6ShFCCNHGpADj3r17EIt1D+5jGAY1NTUmJ4oIi65++7RaLr/Q70EaS4jx1dmipaYe/E8IIYQ0ZtJCe2FhYTh37hxGjRqldfvZs2cREhJiVsKImbh1MOzz8YZOb0mr5fIL/R5EbXb/cJy8fhcF5XV691MP/qdzhRBCiJpJLRhDhw7FH3/8gXXr1qG6upp7vbq6Gt988w3Onj2LoUOHWiyRxLGop7fceq4MxVX1KKtWoLiqHluzyvT22aYCCr/Q7+HcPF3E+Hpye3hIafA/IYQQ45jUgjFq1CgUFBRg79692LdvH/z9/QEA5eXlYFkWAwcOxJgxYyyaUGKkvx/4rB2aMGjBNkKEwdNFjDEPBGBrVhlUWm4lNPjfuqhliBDiqEwKMBiGwZw5czBo0CD8/vvvKCkpAQD06tULffr0QadOnSyaSOJYaME2QoQjpV84ThXKcK28ViPIoMH/1kGrpxNChMCkAEOtc+fO6Ny5s6XSQizKPrNIGbNgG9XMEcJ/6sH/X2UWIT3/LhQqFhIRgwQq9FocrZ5OCBEKswKMO3fu4MKFC7h79y769OmDFi1aQKVSoaamBh4eHhA1s3AXER5asI0Q4aHB/7ZB3UsJIUJhUoDBsizWr1+P/fv3Q/V3bXVkZCRatGiB2tpazJ07F4899hiNw7AnO66DMTDWh/psEyJQFFxYD3UvJYQIhUlNDLt27cLevXvx8MMPY+HChRrbPDw80Lt3b/z+++8WSSBxPLZesE3XOhuEEOIojOleSgghfGdSC8bhw4eRmJiIqVOnoqqqqsn2qKgonD171ty0EXPYcR0MW/TZpoGQhBAhoe6lhBAhMSnA+Ouvv9CuXTud211dXWklbydnzT7bNBCSECJE1L2UECIUJnWR8vHxwV9//aVze35+PgIDA01OFLEAxs5LeTdi6Ro3QwZCEkIcC3X9sX33UkIIsRaTWjD69OmDgwcPYvDgwfDw8NDYdu7cOfzyyy8YP3680ce9cOECdu3ahatXr6K8vBwvv/wyevfuzW1nWRabN2/G4cOHUV1djQ4dOmDWrFkICwvj9pHJZFizZg1Onz4NhmHQp08fzJgxA25ubtw+165dw+rVq3HlyhX4+Phg5MiRTdKbmZmJTZs2obS0FKGhoZg2bRq6d+9uVFqIddBASEKEgbo6aqIpgQkhQmFSgPHYY48hJycHr7zyCjp06AAA2LlzJzZt2oTc3FzExMRg4sSJRh+3rq4O0dHRGDp0KN5///0m23fu3Il9+/Zh7ty5CA4OxqZNm7Bs2TJ8+OGHcHFxAQB8+umnKC8vx8KFC6FUKrFixQqkpqZi3rx5AICamhq89dZbiIuLQ3JyMq5fv44vv/wSnp6eGDZsGADg0qVL+OSTTzB16lR0794d6enpeO+997B8+XJERkYanBb7st8sUtZE62wQIgzU1VE7mhKYECIEJnWR8vDwwLJlyzBu3DjcuXMHLi4uuHDhAmpqavDoo49i6dKlcHV1Nfq43bp1w5QpUzRaLdRYlsXevXsxadIk9OrVC1FRUXj22WdRXl6OkydPAgBu3LiBs2fP4plnnkHbtm3RoUMHzJw5ExkZGbhz5w4AID09HQqFAnPmzEGrVq0wYMAAjBo1Cnv27OE+a+/evejatSvGjRuHiIgITJkyBbGxsdi/f7/BaSHWQQMhCREG6urYPLqPEUIclckL7bm4uCApKQlJSUmWTI9OJSUlqKioQJcuXbjXPDw80KZNG+Tm5mLAgAHIzc2Fp6cnWrduze0TFxcHhmGQl5eH3r17Izc3Fx07doRE8s9Xj4+Px86dOyGTyeDl5YXc3FyMHTtW4/Pj4+O54MGQtGgjl8shl8u5vxmGgbu7O/f/lsT83YmXscKx7W1grC+2ZpXqHAg5KNbXZt9Z/TlCy2O+oXy2HVvldfrVZro6Xr2LFwcL9/emc9o2KJ8JsQ+zVvK2pYqKCgCAr6+vxuu+vr7ctoqKCvj4aM6yIRaL4eXlpbFPcHCwxj5+fn7cNvW+zX1Oc2nRZvv27diyZQv3d0xMDJYvX46goCCd7zHVXT8/1JX9hRYtWsBdYONCFk0Kwrni48grkWkEGSIGaBPshTcmdYeXq21P7dDQUJt+nrOifLYda+Y1y7JQ4YL+fSBCaGio4AuGdE7bBuUzIbZlUClsxYoVYBgGs2fPhkgkwooVKww6uFgshre3N+Li4hAXF2dWQoVg4sSJGi0j6gdnaWkpFAqFRT9LXlkJdwB/lZVBfOuWRY/NBysmtcZXGUU4drUSCiULiZjBwBhfpPQPR9WdUjRdncU6GIZBaGgoiouLaRYcK6J8th1b5bVIZ/vF3+mACsXFxVb7fHujc9o2rJXPEonEKpWDhAiFQQFGTk4OGIaBSqWCSCRCTk6OQQdXqVSQyWTYuXMnHn/8cUyYMMHkhKpbGSorK+Hv78+9XllZiejoaG6fu3fvarxPqVRCJpNx7/fz82vSyqD+u/E+lZWVGvtUVlZqbG8uLdpIpVJIpVKt2yz9gFEfj2WFOf2jh1SEFxIj8EJiRJOBkPb4vixLK+zagrPnsy0H/Vo7rxNi9K/5kBDj4xS/tbOf07ZC+UyIbRkUYHzxxRd6/9ZHqVQiNTUVP/30k1kBRnBwMPz8/HD+/HmuEF9TU4O8vDwMHz4cANCuXTtUV1cjPz8fsbGxAIDs7GywLIs2bdpw+2zcuBEKhYIbh5GVlYXw8HB4eXlx+5w/fx5jxozhPj8rKwtt27Y1OC12x6N1MKxN6F0ohIpmyDGMUKdyTekXjlOFMlwrr23S1ZHWfLAPuiYJIZZi9Y7qYrEYAwYMQGlpabP71tbWajSJl5SUoKCgAF5eXggMDMTo0aOxbds2hIWFITg4GGlpafD390evXr0AABEREejatStSU1ORnJwMhUKBNWvWoH///ggICAAAJCQk4IcffsDKlSsxfvx4FBYWYt++fZg+fTr3uaNHj8bixYuxe/dudO/eHcePH8eVK1eQkpICoKFA21xanBU9oIg+Qi0sW4uQp3KlNR/4ga5JQog1MKwZbYbXr1/HH3/8wQUPQUFB6NatG7dWhLFycnKwZMmSJq8nJiZi7ty53OJ2hw4dQk1NDTp06ICnn34a4eH/1HTJZDKsXr1aY6G9mTNn6lxoz9vbGyNHjmzSupKZmYm0tDSUlpYiLCxM50J7+tJiqNLSUo3ZpSxB/usxeJSWorZjB4gfeMDk4xgSMDjzA4phGISFheHWrVvU/N4MXYVlEQNE+bvpLSw7az5/dLQQW8+VaR2tIGKApC6BmJ/YyqKfaa+8drbKCT6c0+Zck9Zi6fPAWvkslUppDAYhepgUYMjlcnz11Vf49ddfGw7y981AfaiBAwfimWee0ZgKlujGtwDDmICBjw8oW+JDIcFRmFNYdtZ8nrQ2B8VV9Tq3h3m7YOuMThb9TGfNa1vjQz7bI4DVxpqVVBRgEGIfJkUAGzZswK+//orhw4dj1KhRCAkJAcMwKC4uxt69e3Hw4EF4eXnhqaeesnByicG4IRjG3VCN7ZJhyGJZtnhAEf47lt/Mugf5dzE/0aZJ4jVatZ5YGx+uSSF3AyTEmZm0kvexY8cwcOBArkuQWCyGSCRCeHg4Zs2ahYSEBBw7dszSaSU2YOzquoY8oAgxprBMGtCq9cSa+HJN0oruhAiTSQGGQqFAu3btdG5v3749lEqlyYkiFqAudBj5bDAmYODLA4rwHxWWTTMw1gciHVkiYhq2E2IKvlyTVElFiDCZFGDEx8fj7NmzOrefPXsWXbp0MTVNxE6MDRj48oAijoEKy8ZL6ReOKH+3JvlGU7kSS7D3NUmVVIQIl0EBhkwm0/g3ZcoUlJaW4v3338f58+dRWlqK0tJSZGVl4b333kNpaSmmTJli7bQTfUxYB8OUgMHeDyjiOKiwbDz1VK5JXQIR5u2CIE8pwrxdkNQlEKnUN52Yyd7XJFVSESJcBg3yfvrpp7W+fv36dZw8eVLrthdffBFpaWmmp4zYxcBY/avr3h8w0GJZxFC07oFpPF3EmJ/YCvMTnW8qV2JdfLgmjX3mEEIcg0EBRlJSEj3UHAyjnkbKyKZlYwMGPjygiOOgwrJ5KL+Ipdn7mqRKKkKEyaAA47HHHrN2OghPmBIw2PsBRRwTnSeE8Is9rkmqpCJEmMxaCa+2thb37t2Du7u7xkrZhAdMXAcDMC9goEIjIfpREE6IJqqkIkR4jA4wSkpKsGvXLpw5cwZ//fUX93pAQAB69OiBcePGITg42KKJJPZDN3pCzGfNlYoJERJ65hAiDEYFGCdPnsTnn3+O2tpaBAUFoUePHnB3d8e9e/dw/fp1HDx4EL/++iuee+459OrVy1ppJoYwcR0M0oBq0Yil0ErFhBBCnI3BAcaNGzfw8ccfIzg4GCkpKejYsWOTfS5evIivv/4aH3/8MZYvX46IiAiLJpYQa6JaZmINhqxUPD+xlV3SRgghhFiDwQvtbdu2Dd7e3njzzTe1BhcA0LFjRyxduhTe3t7Yvn27xRJJTPB37TtrQhOGMy5qpK5l3nquDMVV9SirVqC4qh5bs8qQsjkX1fW0Mj0xDa1U7Byc8b5JCCG6GNyCkZOTgwcffBBeXl569/Py8sKQIUNw5MgRsxNHbMfZa++plplYgzErFVOXPMfj7PdNQgjRxeAAQyaTISgoyKB9g4ODIZPJTE4UMQ+rUkF5pxx1165BIa8HExQEUWgoGB0rplIfccNqmecn2jRJRABopeIGQgyg6L5JCCG6GRxgeHt7o6SkxKB9S0pK4O3tbXKiiOlkeVdxbvUmBGWfgXedDHKxFPKdBxDUrwc8xz8McVRUk/cIsfbemAIN1TITa3LWlYqFXrsvxPsmIYRYisFjMB544AEcOXKk2ZYJmUyGI0eO4IEHHjA7ccQ4sryr+O3tFWhx/jTEinpUi11RIXFHXVU1Sg79iuq166C8dq3J+8ztI86XvsfV9Up8dLQQk9bmYPyabExam4OPjhY2O36CapmJNaX0C0eUvxtE950+Ql6p2BnGNNHYGkII0c3gAGPSpEmQyWRYtGgRLl26pHWfS5cuYdGiRZDJZJg4caLFEkmax6pU+H3jXgT+dRP1IgmqpB5QiURwVSlwx80H91gR/rqYB/mxdLCNauuNqb1vzNTCvLWYW6AZGOvTpACoJuRaZmJ96pWKk7oEIszbBUGeUoR5uyCpSyBSBdqNxpDafUdm6n2TEEKchcFdpCIiIvD888/j888/xxtvvIHg4GBERUXBzc0NtbW1uHbtGkpKSuDi4oLnnnsOrVpR07AtsSUlwOU8iFgVaiTucFXJASXAgIWrsh7VUneI6+qgzM0FW1ICJjQUgGm193zse2xud4WUfuE4VSjDtfJaja4sQq5lJrbjbCsVC31ME7V6EkKIfga3YABAnz598P777+PBBx+EXC7HyZMncezYMZw8eRL19fV48MEH8d5776Fv377WSi/RQVVdDRdFLQBAIRKjRuLKbROxLBQiMViWBXvvHtiaGo33Glt7z8faSXO7KzhjLTOxD6EXOp2ldp9aPQkhRDejVvIGgJCQEKSkpAAAampqUFtbCzc3N3h4eFg8ccRwIk9P1EvcAAASlRJysQS1Yhe4Keu51xiGAePuDua+38rY2nu+1U5aapC2s9UyE2INzlK7T62ehBCim1EtGPfz8PBAQEAABRc8wAQHA23bQMWI4KGoBVgWLNQPcBae8ntwd5VA3K5dw76NGFN7z8faSWsUaBy98EOIPTlD7T61ehJCiG5Gt2AQfmJEIvR5fDR+u1qAiJICBNTdBVhApFTCR1UDRipBi45tIB2YoHU9DENr7/laO+msU4ESwkfOUrtPrZ6EEKKdWS0YhF+82sSg72tz8FdcDyhc3OCtrIWHSg4XD1cEDxsEzxnTta6Dcb/mHpLWrJ00teXDGacCJYSvnLF2n4ILQgj5B8M6+kg7ASgtLYVcLrfY8ViVCqrbt+F6/Dgqc3Mh6dsXLoMH61zJ21jcLFI6aieNLUBYakEu9XHS8+9CoWIhETFIsPLCXgzDICwsDLdu3XL4Qat8RvlsO9bIa6rdb4rOaduwVj5LpVIEBQVZ7HiECA11kRIgRiSCJDwc7p3jIKuuhrhFC4sFF8A/tZOWKMxbcspb6q5ACD/RtUgIIc6FAgwhU/cXskLtmKUK8+auX6ELFWgIH1CgSwghxBlRgCFgXMHGys3v5hSg+DblLSHmslSXP0IIIcRRUYAhZFyAYd9k6GKp9SsI4Qs+rnJPCCGE2BrNIiVkXIChvxBvL3yd8pYQU/FxlXtCCCHE1hyqBUOlUmHz5s04duwYKioqEBAQgMTERCQlJXGFUJZlsXnzZhw+fBjV1dXo0KEDZs2ahbCwMO44MpkMa9aswenTp8EwDPr06YMZM2bAzc2N2+fatWtYvXo1rly5Ah8fH4wcORLjx4/XSE9mZiY2bdqE0tJShIaGYtq0aejevbttMsMg/+QJX9H6FURIqMsfcTTUQkwIsQaHCjB27NiBgwcPYu7cuYiIiEB+fj5WrFgBDw8PjB49GgCwc+dO7Nu3D3PnzkVwcDA2bdqEZcuW4cMPP4SLiwsA4NNPP0V5eTkWLlwIpVKJFStWIDU1FfPmzQMA1NTU4K233kJcXBySk5Nx/fp1fPnll/D09MSwYcMAAJcuXcInn3yCqVOnonv37khPT8d7772H5cuXIzIy0j4ZdD8Rv7tIAc0vyJXcN0z3mwnhEeryRxwFjRMihFibQ3WRys3NRc+ePdG9e3cEBwejb9++6NKlC/Ly8gA0POD37t2LSZMmoVevXoiKisKzzz6L8vJynDx5EgBw48YNnD17Fs888wzatm2LDh06YObMmcjIyMCdO3cAAOnp6VAoFJgzZw5atWqFAQMGYNSoUdizZw+Xlr1796Jr164YN24cIiIiMGXKFMTGxmL//v22zxgd/inE8DfC0LYgV4iXFLEBbqiuV2LqdxcxaW0OPjpaiOp6pb2TazA+txoR66Auf9ZB15JlqccJbT1XhuKqepRVK1BcVY+tWWVI2ZzrUPdZQgh/OVSA0a5dO2RnZ6OoqKEfc0FBAS5duoRu3boBAEpKSlBRUYEuXbpw7/Hw8ECbNm2Qm5sLoCFI8fT0ROvWrbl94uLiwDAMF6jk5uaiY8eOkEj+aeCJj49HUVERZDIZt09cXJxG+uLj43H58mUrfHMT2WgWKXOpp7zdOqMTNjzRAR4uYuT/VYvbMrlDPfyq65X46GghJq3Nwfg12Q4ZGBHzWHOVe2dC15L10DghQogtOFQXqQkTJuDevXuYP38+RCIRVCoVpkyZgoEDBwIAKioqAAC+vr4a7/P19eW2VVRUwMdH8yEvFovh5eWlsU9wcLDGPn5+ftw29b76PkcbuVyusWI3wzBwd3fn/t+SGIYBGAYMGDAO1CXj69+K9T78vs68hfmDjV8Xw1rU+VojV+mdPejrye2p64EZ1PnM9/N4dv+Wurv8Bbhhdv+WvP8O9s7r5mbiEsq1ZK98Tr/azDihq3fx4mB+n6PGsPf5TIizcqgAIzMzE+np6Xj++efRqlUrFBQU4JtvvoG/vz8GDx5s7+Q1a/v27diyZQv3d0xMDJYvX46goCCrfF71tevw8vKCm78/vMMcYyxD5vWLeh9+GddleJeH3+XbsxUNhcr7XlcHRhvOVWLRuE52SZuQhIaG2jsJzdo9LxQfHLiEgxdvQ6FkIREzeKhjCF4a0R5ero5zy7VXXi/eleNU15It85llWahwQf8+ECE0NFRwBXJHuHcQIiSO87QD8N1332H8+PEYMGAAACAyMhKlpaXYsWMHBg8ezLUyVFZWwt/fn3tfZWUloqOjATS0RNy9e1fjuEqlEjKZjHu/n59fk5YI9d+N96msrNTYp7KyktuuzcSJEzF27Fjub/UNvLS0FAqFormvbxSGYeDNNMyYde/OHchu3bLo8a2BZVnU1evPh7p6BYqKinjz8GMYBqGhoTiQXaR1JiygoWC0P7sIKb0CbJs4AVHnc3FxsUP0yU/pFYCUXgEaA7qr7pSiys7pMoS989pZriV75bNIZxVOAwYqFBcX2yg11metfJZIJFarHCRECBwqwKirq4PovkGUIpGIu2kEBwfDz88P58+f5wKKmpoa5OXlYfjw4QAaxnFUV1cjPz8fsbGxAIDs7GywLIs2bdpw+2zcuBEKhYIbh5GVlYXw8HB4eXlx+5w/fx5jxozh0pKVlYW2bdvqTL9UKoVUKtW6zRoPGIZhwIIFq1I5RKEMaBgEa8h2Pn0flmWhUOpPj0LJQqVS8SYwclQsy/LqtzeEo6VXzR55zbIs5MpmZuIS2LVk63xOiNE/NXhCjI/DnrP6OOK9gxBH5lCDvHv06IFt27bhzJkzKCkpwYkTJ7Bnzx706tULQEOBevTo0di2bRtOnTqF69ev4/PPP4e/vz+3T0REBLp27YrU1FTk5eXhzz//xJo1a9C/f38EBDTUiiUkJEAikWDlypUoLCxERkYG9u3bp9H6MHr0aJw7dw67d+/GzZs3sXnzZly5cgUjR460fcbowvOVvLVxxEGyDMNAIm4+MBJKgYgQa6GZuKwvpV84ovzdmtxn1VODp/QLt0/CCCGCwrAOFNLfu3cPmzZtwokTJ1BZWYmAgAAMGDAAjzzyCNfSoF5o79ChQ6ipqUGHDh3w9NNPIzz8n5umTCbD6tWrNRbamzlzps6F9ry9vTFy5EhMmDBBIz2ZmZlIS0tDaWkpwsLCTF5or7S0VGPwtyUwDAPfoiIU//QTxK1bQ5qQYNHjWws3wFPHuhipj7Xj1QBPhmEQFhaG/2w8ga1ZpTprBZO6BGJ+In8GpzsadT7funWLaiGtzN55/dHRQr017La6lqy9Xok981m9DkZ6/l0oVCwkIgYJAl0Hw1r5LJVKqYsUIXo4VIAhVFYLMG4Vo/jAfohjW0M60DECDMCxHn7qh1fetRtI3nTJYQIjR2PvQq8zsXde27OSwZYL0Nk7n9WEvvAjBRiE2IdDjcEgRuLW2XOsApl6XYz5iYY//Oz9kFQvGOgogREhfGWva6m56XG/EmglgZCDC0KI/VCAIWCOsJJ3c/Q9/GxZ22gIUwIjQkhT9riWDFmAjro5EkKIYRxqkDcxkvqhrGvORxuzZPO0urZx67kyFFfV827FbwouCLEMW11Lx/KbWYAu/66OrYQQQu5HLRhC9veDmbVjC4a1WhmcqbaRWkMIsS6WZaFQNTM9roqla5EQQgxEAYaQMX83UNlpDIY1+zQbUts4P9GkQ/MC37p/Edujwqzt0PS4hBBiWRRgCBm3DoZ9AgxrtTIIvbbRWQebEgos7WlgrP4F6Pi4Bg8hhPAVjcEQMjuP8bZWn2ah1zYaEpgR4eH7uCKhowXoCCHEcijAEDCugM3qr+23BkNaGeRKlckDvx1xxW9D0WBT50SBpX2pp8dN6hKIMG8XBHlKEebtgqQugXZdx4bWfWke5REh/ENdpIRMZL8xGIa0Mty5p0DSNxdM6gKS0i8cpwplOhfjMrW20d7dqoTe/YvoJvRxRY6AL1NNU1e55lEeEcJvFGAIGdeCYZ+P19enGWgoNKm7gBg7tsCSi3Hx6UEl9O5fRDsKLPnHnsEFjcHSj/KIEP6jLlKCZt9BGLr6NN/P1C4g6trGrTM6YcfMTtg6oxPmJ7YyOrjgW793IXf/ItpRYEnUqKtc8yiPCOE/CjCETF0WaaZm1Fru79OsL9Awd2yBqQUvPj6oaLCpc6LAkgA0BssQlEeE8B8FGALG2LmLFPBPK8OWpx5AgIf+HnnqLiC2xMcHFV8HmxLrosCSGNNVzllRHhHiGGgMhpBxXS7sf6PlYxcQPvd758tgU2I7lhxXRBwTH++TfEN5RIhjoABDyKyw0J45hV2+LWTlKA8qe38+sR0KLAnf7pN8RHlECP9RgCFolgkwLDXLkrWmljUHPagIX1Fw4Zz4eJ/kG8ojQviPAgwh4yaRMj3AMGU6QF01r3zpAtI4ffSgIuQffG014Wu6rIEv90k+ozwihP8YlkZC2V1paSnkcrlFj8kwDFrU1+PG99+DCQiA68MPm3Scj44WYuu5Mq0DoUUMkNQlEPMTW5nUymHLQoO+9AEw+UHFMAzCwsJw69YtGlRoRZTP1nP/tSEVizCiczieiPeFh9R+84DwaX0aazD0nHam4MpU+vLIWvcOqVSKoKAgix2PEKGhFgwhs8AsUobMspTSz7RFj2z10JTVKTD7h8t602evfu9UeCD2pKuFcn1mAY7+6Wa3BctoIbV/0P2heZRHhPAPBRhCZuYgb0NnWUrNaH4tifmJrUxKg6ka135W3JOjVtE0D7SlzxYPKqHXzBLHYcg6MLa+dvmcLkIIIYahdTCEjAswTFtoz9BZltKv8mstiftX59YWXKjZOn18XDmcOC8+rgMD8DddlkRd/QghQkYtGIJmXhep6nolvFx0BxgiBkiI8cYvVyr1HsfWa0noqv3UxZbpo5pZwhd8XQeGr+myhMatl0oVC1eXP9Ev0gsp/cKo9ZIQIijUgiFgjMj0LlLqmvYrf9Vq3a6eZWl2/5a8W0tCX+2nNrZMnzPUzBLHwNd1YPiaLnPd33pZWi3HjfJ72JpVSq2XhBDBoQBDyLgHsPEBhrqmXdc7YwPckPr3QMuBsT4Q6XjW23otCUNqPxszNX2mdG8wpmaWEFvg07XbGF/TZQ5DWi+dDd3rCBEu6iIlZGYM8m6uFaC6XsU16fNpLQlDaj/VjE2f9sHZvlg0ybCpCvlUM+uI3UuI5em9dgPstw4Mn+4plmJI6+X8RJsmyS5okgtCnAMFGEKmLkBqW6ZaD2P7QPNt0SN9q3MDgJtEBH93iVHp0z1tZinOFR/HikmtDVozwJ4rh9ODndxP67UrZjCyczim2XEdDFvcU2wZZAt5XIkxaPphQpwHBRiCZloXKVNq2j1dxHZbS+J+zdV+rny0LbxcjTv19XVvyCuR4auMIryQGGF22qxVM0sPdmGx5DV2/7UrEol4saihNe4p9gqy+dR6aU80yQUhzoPGYAiYOYO8zekDbe+HpLr2M6lLIMK8XRDkKUWYtwuSugQi9bF2RgcXQPPdG45d1T+TlqFps1YhRwj9v529v3Z1vRIfHS3EpLU5GL8mG5PW5uCjo4UWHRxs72tXF0sFF/acIlqI40qMRZNcEOI8qAVDyMxYyduQmnZ7t1Ro07jblqVqPw3q3qA0vHuDPVp7HLX/t7rGuWGtlQsQQYWEGOfr1kUtUOazd+05X8eV2OoeRN3ECHEuFGAImRkL7enqA90nygsAg39t+JM3/fib6/Zg7sPKkO4NEnHT7g2GPCjpwa4bFar/Ye/CsRDYO8jWdk91dZGgf6QXkm28DoY9uopRNzFCnAsFGEJmxixSQNOa9hq5yi4FPn0FX1sVQpsdnB3jy6XH2Ae3tQv2jvpgp0L1P+xdOHZ0fAmyG99TASA8PNzmY13sGbjbc5ILQohtOVyAcefOHXz33Xc4e/Ys6urqEBoaijlz5qB169YAGh4kmzdvxuHDh1FdXY0OHTpg1qxZCAsL444hk8mwZs0anD59GgzDoE+fPpgxYwbc3Ny4fa5du4bVq1fjypUr8PHxwciRIzF+/HiNtGRmZmLTpk0oLS1FaGgopk2bhu7du9smIwzx94PSEs8uhmFsWuAztKBuqzTp697QJtgLKf3DjXpw27oG0REf7FSobmCvwrGQxrzwMci2V0Bvz8Cdr93ECCGW51CDvGUyGV5//XVIJBK89tpr+Oijj/Dkk0/C09OT22fnzp3Yt28fkpOT8fbbb8PV1RXLli1DfX09t8+nn36KwsJCLFy4EAsWLMDFixeRmprKba+pqcFbb72FwMBAvPPOO3jiiSfwww8/4NChQ9w+ly5dwieffIKhQ4di+fLl6NWrF9577z1cv37dNplhgH8eYJYpKNhqgJ6+wZjJmy5pDMa0VZp0Dc5+pEsQts0Z0LDdwIHU9hhsmtIvHFH+bk0GmfL1wU6LEv7DloXj6nolPvylEAnLj2D8ausMJLcXGmTdwJ4Dre01yQUhxPYcqgVj586daNGiBebMmcO9FhwczP0/y7LYu3cvJk2ahF69egEAnn32WSQnJ+PkyZMYMGAAbty4gbNnz+J///sf1+oxc+ZM/O9//8O//vUvBAQEID09HQqFAnPmzIFEIkGrVq1QUFCAPXv2YNiwYQCAvXv3omvXrhg3bhwAYMqUKTh//jz279+PlJQUW2WJfmZ2kWrMlrWo+grqBeV1GL86G2MeCEBy3zCrp6nxe7UNzmYYBl6uElTB8Bp3e9Qg8m2tkubwscbZnmzRAiX0MS/2qj3n09gmPnQV49OU5oQQ63GoAOPUqVOIj4/Hhx9+iAsXLiAgIADDhw/nCv0lJSWoqKhAly5duPd4eHigTZs2yM3NxYABA5CbmwtPT08uuACAuLg4MAyDvLw89O7dG7m5uejYsSMkkn+yJz4+Hjt37oRMJoOXlxdyc3MxduxYjfTFx8fj5MmTOtMvl8shl8u5vxmGgbu7O/f/lsQwDMAwYMAAFriJMwwDqbj5gc4iA1fR1qdhxiDdauQqrtAj1lUlaUaaquuVSM0oQvrVSiiUDQuPJcT4Ynb/fwri6vxsnK/KZhY0VPy9Xd/3U7EN218c3PR7mfsw9nKV4MXBkXhxsGM82AfG+mJrVqnOQvWgWF/efwdLmd2/pd4Vt2f3b2mBwP6W3sD368xbmD/Ycce8eLlK8PXk9vgqowjHGl3bA2N8kdLfskG2qfcQa7PlfdzQ9NjqM5zlXkEIXzhUgFFSUoKDBw9izJgxmDhxIq5cuYK1a9dCIpFg8ODBqKioAAD4+vpqvM/X15fbVlFRAR8fzdo+sVgMLy8vjX0at4wAgJ+fH7dNva++z9Fm+/bt2LJlC/d3TEwMli9fjqCgIANzwDjKqip4eXkBYhGCGo1BMdWIznewPrNAZ4FvZOdwjbEupmBZFipcaHY/daGnfYg3SmVyi6VJVqfA9BXHkVci0zhmw4rd97BtzgCt62iEhYXB1eUiUC1vsk3N1UWCsLAwqHBRbxpYiBAaGgqGYSCrU+D9A5dw6OJtyJUspGIGwzqG4OUR7U1az8ORLJoUhHPFTX8L9biXNyZ1F3weNLZ7Xig+OHAJBy/e5gqtD3UMwUsWOhcyr1/UG/hmXJfhXQvcR9QsEeSacox3oyIs9vnaGHsPCQ0NtXga9LHFfZyPbJ3PhDg7h3o6q1QqtG7dGlOnTgXQUEC/fv06Dh48iMGDB9s3cQaYOHGiRquH+uFWWloKhUJh0c9iGAZBXt6QyWQAw0Bx65bZx3wi3hdH/3TTWYs6Ld4Xt8z4HHWtX2lVrUH7q1jgTnUtovwtl6YPfylE3m2ZzhW7l247o1GLyzAMQkNDUVxcjH6RXthacU/ng7t/pBeKi4sh0ts+AzBQobi4GNX1SiRvutSkVnl9ZgGO/lmMrye3t0uXFVu2fqyY1JqrcWYhAgMVV+NcdacUVTZJBX+k9ApASq8Ajd/AEvnAsizq6vXfg+rqFSgqKjLrtzekZt8Wx7AmQ+8hje8d5o4lMuaatPZ9nG8smc+NSSQSq1UOEiIEDhVg+Pv7IyIiQuO1iIgI/P777wD+aWWorKyEv78/t09lZSWio6O5fe7e1RzEplQqIZPJuPf7+fk1aYlQ/914n8pKzdWbKysrue3aSKVSSKVSrdusMViVYQAWLMBa5vgeUpHefvweUpHJn6Or/3dzVCog9dG2+Pq3WxZJ07H8Sv0rdudX4oXEiCbbWJZFSr8wnCqs0tnHO7lfGFiWRUKM/v70CTE+YFkWqRk39XZZSc24afRYDVODA3vMmw80nHMvJEZg/uBWTQoJzjDAWx9Lf//muhuqt1v6Gt+aVYpThVUGjfGwxDGszdh7CMuaNlmBqdekNe/jjVmjIsLc8XTOfs8gxJYcKsBo3749ioqKNF4rKiriahGCg4Ph5+eH8+fPcwFFTU0N8vLyMHz4cABAu3btUF1djfz8fMTGxgIAsrOzwbIs2rRpw+2zceNGKBQKbhxGVlYWwsPDG7oc/b3P+fPnMWbMGC4tWVlZaNu2rfUywFiNBnlruzGbcrO21gA9XQOfmyMWNQyytkSazB0AaehAakMHm1pqmlZzgwO+DP4Vch9qPoyJsfZAcktMbmCPCRKM+W1sNYja3GvSWvdxa1RE2KtygxBiHocKMMaMGYPXX38d27ZtQ//+/ZGXl4fDhw9zszYxDIPRo0dj27ZtCAsLQ3BwMNLS0uDv78/NKhUREYGuXbsiNTUVycnJUCgUWLNmDfr374+AgAAAQEJCAn744QesXLkS48ePR2FhIfbt24fp06dzaRk9ejQWL16M3bt3o3v37jh+/DiuXLnCnxmkgH8CDKBhJimGsejN2pIFIn2FaV20FXqMTVPjh6slZi4y5MFtSCBiqYKKJYIDWvDOOmxdcGruXLH2LEuWCJhttTaKqb+NrWY/s+Q1acngwtIVEXyp3CCEGM+hAow2bdrg5Zdfxvfff4+tW7ciODgY06dPx8CBA7l9xo8fj7q6OqSmpqKmpgYdOnTAa6+9BhcXF26f559/HqtXr8bSpUu5hfZmzpzJbffw8MDChQuxevVqLFiwAN7e3khKSuJmqwIaWlOef/55pKWlYePGjQgLC8N//vMfREZG2iYzDNH4QceyvL1ZG1KYvp85hR59hQdL1uKaE4hYqqBiiYIILXhneba6Fo0pKKsD36//v70zj4+qPvf/55zZkskkGUIMJEQCCQSuyGKpFiiCS12u8nMHLKhFK3gr9oq9tPZWW62teq914baoRUCRqlUUpLgUd0E2NyyQsIQsQFhCyDKTZCaznvP7YziTWc46c2YmCc/79eIFzJz5nu95zvY832fbfgLbjnTB6wvoVspYD4O5r3gH0lFSuDfek6lYiKDFDYLou/QpAwMAJk6ciIkTJ0p+zzAMZs+ejdmzZ0tuY7PZcO+998rup6ysDI888ojsNpMnT8bkyZPlJ5xJYl6yvfVhrUaZzjaxsGcZReOFtaCkPCy5riLttfKllCE9FJVkFZHeUDe/P5KOezERRTnHbMB9F52NJ4qL48JRk0EPg7mveAdS7QnqrfdkKoye3mhIEQShjj7VyZvQRtSrhedT2sE12eQ5pS67M84pwNrbx2D9HWOweu5oAMCtr+7HtS9q6zaspDy88u1JxU6z6UoUTLb7th7dsNUoda1uP5ZsPtovuj2ni3R0U1bbWV4KPZVTnud16aSdjm7cyZ4bPbpVJ3tPprsJpR7PmlSMSUndBJE5+pwHg9BAxAuGDwZ1X/XSM4Zc7aqf288lFb6gbkXs7LjwJaljvWvKEE3HqYVku2/rpYjIeVKAkNwyHWbXl0jXCnSmV39j7xmWYWAzG9DlCya8st9XvAOJJFFreZ6mIwxLC6kwehIdM1aOJgOLK85twy3j8zV7vAmCSBwyMPozEQ9evV8AeseQq1WmkwlfSER5EIwLuWN9597oBk56hiYkW+1FD0VESqmLJNNhdn2JdKxAZzqMRuqeYQDYLCysZgM4DppzPJI1upVIlaKshNbnaaoNrURIhdGjdUwpOYZ6B2XRAghBpBEyMPozMUneer4AUhFDrkaZTmZVNlHlQelYn/rgAOaOz8eybcdSWhFISVERk5keikikUqfkyaCYaHWkegU602E0UvcMD8Dl43Dl6AIsmlaa0P5TVWJVIBPeAa3P01QbWomQCqNH65i9Nc+QIM5EyMDoz8SUqdXzBZDq8AsxpUGPVdlElAelY/1gbxM+39+UkepcSmEVeikiOWYDFk0rxWe1DrS4pDs+U8K3OtKxAp3JMBp1z4fkr5FUXGeZ8A4k8jxNtaGllVQYPVrHzHRYIEEQPZCB0Y9hYgwMvV4AmQq/SHZVlk/AyFJzrO0uH7x+TtOqmR6yURtWoZcikulV8XSRSmVNGDtVK9CRc89UGE2mng96jZdu74Ae8krkuFNxnafC6FE7ZqbDAgmCiIYMjH4OwzChShqnq2no8QLIpKKpdVW2yxvA8h0nolb4J5XZML4kB18e7lRUHtQcqy/Iq1o107uxWiLhAMmek1Stimf6pZ/KpndyY+uhjMmNn4kwmnQ+H1J13tLpHegP8hIjFTLrDWWMCYJQBxkY/R4GQI+BEfVNEg9aNYpmKl7MalZlhZfopjonWl1+BGPmuKG6DWUDsrB67mhYTWxSVZQYABYjC7dMidYAx6PLG8Bdbx7UNYwqneEAwrnUc1VcT2VH7bUmtl0qm96pHTsZ40JpfCVFWUl2mSouoES6mhWmwzugp7yk9t1bGq0mc68q0duqaxHEmQwZGP0dlgE4iBoYySClaDIAbGYWm+uc+KzWofsKmVL4AgDRl2gkHA8calOf8CerVBdkwRNk4PZ1S/7ewDJYvuOEordBS9JrKsIBYreVMgCWXFeBV749mdSquB7KjloDRWm7RBND1cg2FUmnkfvVMr6ac7tgcglsFiO6vAE8/Xkjvqh3JmT8pSI8K1beqTxviZCIwSzIeVOdE2IzUisvNfvOpLz0uleVUHpWZ6K6FkGcqTA8daLJOKdOnYLf79d1TIZhUFxcjIY//Qm8PwDLTTeCsdl03YfwMhAUTZYBuv0cOr1BRF5ULAOUDZAvEZjoSyz2d89sasTaXS2SxkUkLAPcOK5Q8uUV+bLzBYPo9vNgAFjNLEwsi6mn+2C8ssuJ1dsPSa6a3TiuEF/Ud6Cp0yc7lwKrUdML9YaXqmXHHJxrxrrbx8iOIfVCv2XiICxaXxenkMSey0TPm9x5EmQWqewI1/OJEyfA87ykgRI7PzXb3frqflk5Fueasfa0HLUqQErnKHJsOaT2u7nOiZNd0s8OsfGVZPJ/14/A4ncPofZkl6xs1c45WUNUSt6pPG9aUXs9RuL2c7h7XV2cnAHAwACFNhOmlecrzlHtvrVci3rKS897NaHrzsDgynNLMFfnPhgmkwlnnXWWbuMRRH+DPBj9npDyx3McoPPKXWyc8pLNR7F2Vwti9WypFTI9XmKxxyMXNhSLXIM4uZddkc2E5bNHhUNbFl8xCpv2N0mu1s6fVIzPah2KcxGqM6ldxU82HEDOi7Bxfxu6vJziuUz0eko2vEvtaqzSdsu2HVPtCdLa5FEvL5PUeXprV4tkV2u58ZVk8ov1tajXweuSbB6D3PX59ZFO+FN03hIhEe/Asm3HUdscb1wIv5tWnq9Kzmr2vWhaacqucz3mp+ZeTfS6Y1k2anGCIIj0QG0t+zk+jseOw0785LX9uPbFKtzwUjWe2dQIl0zOQCIwDKNKaRTo8gawYE0N1u5qQVOnDy2uAJo6fVi7uwUL1tQkND81Cp3YvISXVyRyL7sjDm/U9jaLEctnj8KN4wpRnGvGWTkmFOeaceO4QiybVQmbxaiYfCg1J7EXossXxDObkg+rkDvGThHjIvL7yHOpFS2KtxRqrzWl7bY2dKpODFWjAEWiV9KpXE+J2PwiNeMryaS+Tb6hYiLnPhFDVF7eXnT75K8hlkFC5y0RtDz7BLY0OCXlzEO9nNXsW8u1qLe89LpX03XdEQShD+TB6Md0eQNYu6cV7k43Tll96LCYAKQmqU+N0tjU6cNtr+5DpzcIpycATyD+7ZpMbLqal6gYYivmWlfYxVZrIz00jm5tIXCCdyU2jwWQzjHRElahdIxKJFPuUY9yw2oMFI7jVG03vSIf6/Yoe4IS8brokXSa6HkSG1+VEa5gtMSeez1zGiLHkjtuHqEQIzmcngBueKkaHZ5ASoohCHNNxFPF8zwCCtahmntMy77VXot6Fo/Q+17NdLU5giDUQwZGP+bJDw7A1R2AGQAToTWkoqupGqWRB1Db6lEcK5mXvtxLVI7Il1eyoS2CcaGUbK6EWNjU+JIcyTG1hFUk4u2JJNlyj8ko3moNFJZlVW1315QSfHtUPDF0qN0Cf5DH9S9WoVkm1wEQvyYS6bsS+Xs158nAhO4tNeOrMsJPF56T3B/LwO3nNIc3ylU3ih1r6vBcxRAoJTwBXjbnQECL4ioV1mlQ+G3k/SLsy2hQ/xsptBjr8ycVK16LeheP0PteJeOCIPoOZGD0Yz7edxI/CP8vWmNIRVfTRJV7MRJdrZJS6JSIfHnpEdoiFWYgkGVk4QtyqucoGIUnO32yq7pb6juwaJqy3BL19gAhhWTq8FzF7eTOX7JVhtQaKGq2k6pM9oMyG7475sKGqlZVRqLYNaGmaZtSLpLSeRqYY8L0inzVydRKMikvyJIMk2IZYFKZTXWMvtKxSRni6/a0QsutbzWx4Hhe1CuqhFrFVS4nJMfMhgr2ycjsmU2NUXKwKfxGbUlVpTLaNjOLG16qRoDjwDIMyguy0OkLguMgeq3ooehH3vt63qsEQfQdyMDop/A8D3+Qh5DkzYrEs+vtck5UuRcj0dUqKYUux8zKKk2xL69kX3ZKYS32LAMurCjQZJBxPOAJyKu6J7t8uPbFKtkVZUHpc3oCkuMwAHItBnT5gnHzYxngszontjRUx+1DbeJ++DxtO44tDdqrDKk1UNRuJxbi9symRjS2e1VXJJO6JuSSndWU61W6FqdX5GtKplaSydPXna4i1dwl+j3AqErGVXNscvH+SqFakeRnGcEDqjwWkWhRXOXm2uXlRO8XwQv23TFX3LXEADAZmFCIkEYjW03HdgYhA6Ku1RMlyhaXH2UDsrBs5kjYLPEqQKI9juQq0ul5rxIE0TcgA6OfwjAMTAZG9h2tt8tZUBqXbTuGdXtaEzYykl2tksqHWLCmRtXLi+d5WWOJZQB/MFQqNbZqkNoQqyAPyZCFZFCqRqUmdEuQyTMR/S58QQ5OTwABDghwQKvIPgDx/JDYeYgpItMrQiV/1eYEafEMuHxBmA0MfEEeZgOL/GyDbJ6KmhwAMXmpUYBi7zc1CbVaFK/Y8Cqx+zvHbMCymSOxfMcJUdnZLEasu/uHeGTdztN9MKK/v/XV/api9NUcm5KMjSwQ5JRtDX+Qg2jFAxnUhqkJKOWEZJtYXDF6QJxM/UFe1AvGI/QcqRiYBZePUzSytXZszzGzccYF0CP/5TtOiIZTJtLjCJC/99X0zlFzTyudI4Igeg/UB6MXkKo+GMu+bkPH31Yj29eNfw6bhLbs/PD3Yr0G9ESp5roUwkt/WQq6ysrV5QcQ9/KeVGaDPwh8cKANYo4DAwvkZxngDYReeNmn+2Oo6U8g9KiInVOr2y9rbGSbWHgD6kOrYs+zUp8Qq4nF1ecUxL3Qn/68Eet2y/etAKDY22LB5JKEat3H9sGIRa1ngEGo4ZZSgQOe53Hti1VhY00MFsCgXLPm3g6R+7hx1V5VvQmUekqIFRaIVUKB+Gv8wvI8zJ9UHLWSHSvr2ORkJbmclWPC+jvGKB7bYJsJAZ6XHWug1YhLRtixViIJPzxWrhmAvAcj28TCnmVMKExNy3ELiwyCzBT7T+SZsXbeGFmlWUuPCGGcZHqwaO1xNL4kRzKUMPYZlGgn70TLmis9OxKF+mAQhDzkwejHLL5iFJ5ea4LP3x21uJcOl7PWfIwsI4sB2caElTU1SIWqSL28N1S3IcfMIiihjQc5oM3dU05XqGqjJiZb8NDEzumZTUdlKxpdMcqOXcfdqr0esbk2SivG+VlG0Y7iWxqUK8vwgKoyk1pq3WtJJo1ErrSrmgIHanJUzrKZZJvkKYWR+INBtHfLl2MWwhitJla2SpkQX+8RUQLX7m7BV0c6ASAuTEdNRbnIY1CbnxSau7IXT2ksk4HFfRedDTBQFbIot82Mcwpw3/SzEwpTU5MLIxw3gCiDTDFpOhhdYELsel+2TVvH9kQrWwn/1trjSC43LPYZpFQVKzIXTkDtOYodgyCIzEEGRj/GZjFi9nlF+HZfADtzjGCzTQl1000ELfkYeRYD3pp3Tlw8sJoSjYm+SCKNi5+9WYOGtvjqVhwf6gehFaWY7FjjLrZjuJhhIvxu4dRSAAivLvqDHNq6A7Iy9ge58MqdktIhlsNhNbGKv1MTohLgeFUlMBdMFlupzMdDN6hfLUyk1Gbs9aQUiz6tIj/ucyUPgtbKYl2+IG5ctTepsUJKoFfmO20V5dTE6Ks1RNTmOimFid0ycRBe+uqE7L0jyC2RMLX7pp+tuGjS4QmI5j8pyYFlgSWbj4rmLrzy7Ul8Ud+B5i71CrxwjGrkr6YamJoeR0q5YXL5fmo8E0rn6NktR2EysKJjiOWZEASReujO6+dYjAZMKsvHtH8fCaaoKG0rO5HxtJvrnGhx+UWbguVZWPxt7ujwS0BN1Rmll5GWkpML1ogbF8kiFpNtYIALK6Jj/+VyIowsYM82wsSycUbhommluG86oyrMpq07gBtX7VVVTlMsh2PZzJGKyorRoFyRimWUDRxfkMOCNQdwuC12pf0UdjVtxXM3VMBqUiiHrGH1VkrBmj+pWHPSqVLn6QlDbJrLFnf7OXT7e86tmnLFWpEzuMRQKxc1xoPSWPMnFQOQj8+/ZeIgLFpfJ3kPXf1vBbjnwlLJBRW1xqjSoonbz0V5MdUk6TMAun1cXGjhW7tasH5Pa+g6lZhbJGIKvJL81VYDS7aktbA/KeNCzRyUztG7e9vAcRAdY/nsUUnNnSCIxCADo78juO359Hc17XGzn40ubyAqqVSLsh2ZKCimSAghIOcNsWHH4U7V8bkvbD+OQykwLgS404ncAMIK7Benw4QEz4BcOVuOBy6qyMcvLhoKoKeDd6wyPKksFxuqpZPqOR7hLulyoVtiv2to8+CalVWK106HJwBOJr5ZWPEXjl+KVncAre74OHeOB2qbu/DCtuNYNL1Udgwtq7di19ubu1qwbncLCnNMmDwsF+NLcvDl4U7FJFy5VdZD7V4cbvdqKYwkipqQlESINrhOYPuRffD6AmEvQ2wyrlySuLCdGkNEzHBgmVAFs05vEHNe2Rd1L4uFOD6zqVHyHgpwwAcH2vHlkS7R54EWY1Rsri5fULThn9ok/bwsI5zdgbjrggfg11D5IbJgh7AIs6nOKepU1FoNTM39ZDHK54YJTQ+1eiZe2H4ci6aVqjhH8Z+Fx9h2HE+UyT8zCILQH0ry7gWkKsm7uLgYh557HpzDAfOVV4AdPFjXfSSKlIfhiU+PYH1Vq+hvwvX5W9Wv2iolDieaiK6WIpsJOWaDeNft096Jdrd8eFNkkq9UkmdpvhkMw6DR4VU0HOTKz6aKyMT9F7YfT6pXipAQKyB1LT2zqVF29VYpKT1yW+EasppYWUMr2euJZUJJzUaWhdMTkO1UrdZIVMvgXDP+Nne0bCKxUAlIKUk8ktiFBaWqQF3eAO5686BsMnPseVArd6nngdLvhYIMsajxHg6ymTCtIh+b6pzo8ASiKplNL7djy+EuHHd0K85d6biEJGo5j6iBAQptpnAFtVtf3a86CVzpfrpmTIGq3LDYc6A2ET2Ze6s4z4ztv7mMkrwJIs2QB6O/I7yIdXywJptEJ+Uqf2evuHEBhJSpeo0hIXLx5Wrd/okq5CwTyi2RMoiCEaVe5RBWT+VW+o44fMg29jTQOtUlXYkqNnRLTQ6H1PExgGjYm4BY4n6yvVICQT6stMopumpWz+XKrQqozVHQI4wECPW0WDC5BHNe2SdrYOiJEK4kl0h8qM2DW1/djy5vUFVzvWXh/ibShohYuKPNzOJQm3hp1YY2D65dWQWrmY0aU63cY89luB9Mt/TijlLJbKV9t7j8cUasN8DBajJj/uRibGqoUTV3uflFhqUpeUSnleeHE921JIErle0GmKhStO3dftGmh9o9E6E5JNPEVUiiJwgivZCB0d8R7IsklzsTLRGolmXbjklWaxJI5B0hFV+utpP18ALpfhBSCC/9zhhlLBFa3X4s2XwUm+ucsmN1B3jUt3kw1G7BgGyjaJiRQGzoViKouZy8AU5VrXul0ryRsCxEV7iFsKaBViOmj7CHewM8u+UoPjzgCCehZhlZjCvJ0WQQSF1DkSTTGT1yP+v2tOLboy7FXBmlkJSouQGwmRm4/XycQRjZ2+CUyy/b56HDG1/xKjYU6NktR/Hu3viyzmK9ULQmvAPReQ5v7gqFRirJKna+QiGBBWtqRI2ZSIbaLZLV9tx+Dm6fcqWsWIRKZsu3n4DJkNhCDcsAg2yhEsnzJxWH7y+lXh1b6juwaBqvOowwsqqUcD/Fnt8AB2yobsWu4y68MKsS900/W9bj0HM/MYrnTpiD3IIBw0D23WE06NvviSAIdZCB0Y/hOQ5BpxOBo43gNm0CM8Ae9T3DMGAHDIDh7LPBDh4MRuKFozYRLxnPxpaGTuXjSWhk6QomSqtiIwZm4fmZlXElG4XEYMHg8AR4IKIPhvDSn/PKvgRn3APHhxI+WRViDXkzvMgyyisODCOupOsND/EV7kh5chyH616qlu0vIMAyQK5ZxivEA82uAN7c1YKN+9vwwqxK7DruhsfPhbd3+7mwMsRquFaFSlxiJT0FJpXlSob4qUXwFuRZpM8hywCXjAjls4gp/QxCXiqrmYWBYUT7FwChkBmrmUWnl0NHAtXSIue8uc6Jbxq7JAsmxK5cP7vlmC7FFQ63ezG8wKIpZCzA8WFvjdJPJgzJEV1AEUK5EvUycTzwRYMTV5xbgtXbD2n2jv6/cwpgNoaqJglN76YOz4VPYZUmskqcTSYfi0G050ZYYPrggEM+30GDZ6LLG4DbL12mObact1iS/wVDbfjkoANdEoYeywAXDo+v9kYQROqhHIxeQCpyMFx1DahatQ6Dvt2MHI8bLDiwCDUHC8OygMUC5qxCmM4/H+YZM2AoK4sbS645GwOgYmAWunxcQp4N4fJTamKVDINsJrx9x7lxn4fjvUU61g4vyMJfZ46EzWJUNJxKSkpw4sQJcByXUGy43mSbGHgDvGS8tNZclmQRa+oY2cvh2pVViooaA2DkIBucbi9Odqq7V0xsaHVV7AHHIFRhSIt+mG1kUJxnhsvHIcjzcWVj73zjgGQ5WL1gmdCqOg/giEzSOAOgbIAFE4bYJBug6UmWkYEvwCvuh2UAe7Yhqn+MHhhZ8URfMdQ05ROIzEOI9OI6JEKAIjEw8iGEZ+WY8OkvL8Y1f94s+gwysgyCPB+3Yi+c/9ieJgy0LcJI7UOYe2FOKH9ErkpXLGpzJgbnmnFheR7eEumtIZBnMWDt7WNEO5oLIXhK50EYY+SwsykHgyDSDBkYvQC9DYyu2gbseOw5DGuqQ563CwY+CAY9bQrijAyzGYzNBsO55yLrJ7fFGRlaFWWl5GqxGPoOhaTWZMgyMsjPMmJaRT7mfq8Ir+5sjmpOlmdh0enjwHEIV7BxegLo9AZPJ2X2/D7WcJLrEiuXGJlKLAYGJfkWyfwDly8o22U8FRTnmrF67mjRxnBiq/CRMAiFBA3IMaPd5VVU7NIJA8BmYREI8uhOw7xGDMzCucXSXZNj0aJ4J4PeSeepgmWAG8YOxOd1TlULGkJ3bqmKY1JYTSxyLQbZ+0xIPj54qFG0/K7wrIr93B/kdTUaywsscPk40VLiLAPkmFl0eTlVxosgryWbjyp6hzu98s8hYWFCbVlvqTEGWk2wmI2YPNSGBZOLdQnpBcjAIAglyMDoBehpYPAch08ffR4Dv94Cu7cLOf5uGE6/GgQDI9LYAMsCRiOQlQVmwACYL70Uljk/DodL8TyfkHchdtU6snRiq0RPjEzCMsCVowag+qRbcmVYWD1cPntUVBOqwYMH48SJE3Hbh1+GKhKaQ0o0o4vyzDLAB3eNE1VahNAtpfOZa1GvVKhhoNWIvCxjysOy+jvFuWbwULf6ni70vHZTSWQ1M6UKSgJCBSk5L64YZ+WYML0iH+v2SCvZBgbINhuQZWTC3rDYBRCxBHm9PaNGFphxzkBdjBZBXsKzTyrHhUHofCi9BxgAwwp6Fqu0nodIlBa+tEIGBkHIQzkY/Qy+uRk4WAsTF4CB73kMRxkVcT/iAY4D7/MhWFMDvrkZzOmStokmr0Ymxiaa0Jkoiaymcjzw/v52xW0OtXtx7coqXD7KDl8Q+Lw2OoH48lEDsHDqEOSYDVGJkR8ecKDbL66wC4ZLc5cfiWea9GA2MLCaWNGeAQBUnc9OL4dcCwuXTzmR2MwCCrmucPs5tLvJuEgWNR3T04kQTujyBeHR0Ss2YmAWXD4OAY7HKVfy48auhqupSiTkALh8Qby3t03TtWtgGdw1pQTfHpWumBbkgS5vEF2no+qkmutF5jFZTawu1coiCXDAhwfak743YytujS+x4ki7RzLRXc0iE49Q9bCfvVmD52dWyiaxK6G2IhxBEPqQXNkTotfBuVwwBzxg+WivhfQPOASCHFweH046PPiu7hRWb66Hy9cTtnJheZ6qJONY/BwnW2JVCpbpKYOaCKkO1XD7OayvasP7+9rg9ocUcI4XPm/FT1/fHyU/IdFYLMl2UK4J14wpAH96XD3IyzKCYZhwyFakceHyBWEzq7vtO70cbGZW8TwoGRdA6FyScZE8RgObdLWqZLCaWAyymZBlZMAyIc+FyxdErsWQ0DNCDCMLPD+zEmtvH4P1d4zBdecWJD3mQKsJi6b1dPNeMLkEZQOyJK9twdtxy8RBmP/GAc33ps3M4tZX98Pp8cNiZKGmWBSPUHM9sRK9h9s9WLbtmC7VysTwJBlHF1kuV1hQ2lDVppunurbVg/lvHIA/SeNKWPgiCCL19GkPxvr16/Haa6/hqquuwrx58wAAPp8Pq1evxrZt2+D3+zF+/HjceeedsNvt4d+1tLRg+fLlqK6uRlZWFqZPn445c+bAYOhxm1ZXV2P16tVobGzEwIEDceONN+Kiiy6K2v/GjRvxzjvvwOFwoKysDHfccQdGjBiRhiOXhs3Jgc+YBe60UskxLJjTORg8opV24dnPcEGYOB5Z6IbPH8SG+m58tKYmXNdcqiOsEq2ugKoSq7H0hVhuOY44fLhmxR4MybfgmNMrGZsf5AGPL4gP9rfrGr+fZwk1sIoMsbhl4iC89NUJ0RKiciRTXUiARaiqUbr6OkTt+/SFG5tAC+jhK0ovkSvEmcjtAUL5TFazIdRrBYAnwMPT5Udzlx9GNvSUSXZeM84piApBvP2CYnx8oB1d/sQHjiy5CkRXJdpc54Qzpgme0Izuhe3HcSSBxP26VuUKVVoQShhvru+AV6byUiYQQqzu/mFJOIwpFd5qNRXy1CBVVZAgCH3pswZGbW0tPvroI5TFJCS//PLL2LlzJ37xi1/AarVi5cqVeOqpp/CHP/wBQKgs5uOPPw673Y4//vGPaG9vx9KlS2EwGDBnzhwAQHNzM/7nf/4Hl112GX7+85+jqqoKf/3rX2G32zFhwgQAwLZt27B69WrMnz8fI0eOxHvvvYdHH30US5YsQX5+5sriMUVFwMgR8H/dhCDDggMDFj3GReTfwgsw9G8O5oAPxZ2nMO3w12g9mY/ndm5CgOPwQ58bZt4PH2tCp9kKBgxsWUZ0eQKhlwjPIy9mG/60GtfeAIwDFLcLo2YbPcdK1f4MZjTmDUJn7iB4rAXgGfEXo1MHBT4SE8vEKTdC6IU/U5YbA7R3p6ZCmBI8D1QMtMDl4xHgeBgYwGYxoLY1+RKp6SS2oVoyzQojYQDkWVjV12FbdxBt3fEKrrD6bmB6jLosI4vLKu1gGAYbqlsV5yoc48KppeHPXL4gFq2vgysJ4wIIeRRcvmBU7L1QLnnRtND+BK9f5N+JhuSk4k7jeJwOo0wvDEKFL8RKHQOhEKt39rbiiwYnTKcLdmiVmZoKWML1IxcCqyY8NtbYJAgiNfRJA8Pj8eAvf/kL7rrrLqxbty78udvtxqeffop7770X554bKkt6991347777kNNTQ0qKyuxa9cuHD16FL/97W9ht9sxbNgwzJ49G6+++ipmzZoFo9GIDz/8EEVFRbjtttsAAKWlpdi/fz/ee++9sIHx7rvv4tJLL8XFF18MAJg/fz527tyJzz77DNddd11a5REJw7L4wY+vwo6GQ7A11YHj/OCDLHhwcSu3wv8Np//w4DDY68RPDnwUt00kkUaK3DZxc1OxXbrHSuX+AgA6TDk4lFeM3YUVaMvKTb8BpedYeu/P3w2vyYzDeYOxr2AYOFb/xxEPoK7ViywTC/ChMqpNGVDSkoFlgBvHFmLBlJ5uzS5fEGZDqBwxkLhCm2th8ddZlfjNe4cUm86pITIkxhPgsPuEG49dPQyfHnSIVgszsoA92xjuH7Ngcgmsph5jXAivTHZe9a0eLFhTE9XoL7Zx6KQyGwAGOw53IsBxMDAMnJ7MGMbpRk4pLxtgwf9dPwL/9Y86ScM8yIU81omSbWIlc9RitzvLZhItB21iGQQUrAulzuwEQehHnzQwVqxYgfPOOw/jxo2LMjDq6+sRDAYxduzY8GdDhgxBYWFh2MCoqanB0KFDo0KmJkyYgBUrVqCxsRHDhw/HwYMHo8YAgPHjx2PVqlUAgEAggPr6+ihDgmVZjB07FjU1NZLz9vv9UdWiGIZBdnZ2+N96kTuyHFMeXIiql9bCt+cb2N0OmAOhBGIWPbHwco9iqdkwGreRQ8126R5Lz/2ZAAz0u1DQWovvtdbGhagJnMnGGAcGHkPIyHhj1KX4evA5Ir9ODh5AdwbCs/TiLJsJv7h4KFy+IOa/cUDX8JMuH4ffvHcIj189HAvW1CiWDNaC0DTwrjUH0Skybq6Fxau3nIPCHBPcfg7Lth3Hba/tRyDIw2hgMHV4PjbXawuvlJwLerpnL5hSIlp0Yn1Vmw576n+cN8SGolwLXCm8h7JNLAblmhWbLxplklmUPLQsE6pIddeUIeTBIIg00OcMjK1bt6KhoQGPP/543HcOhwNGoxE5OTlRn+fn58PhcIS3iTQuhO+F74S/Y8Oc8vPz0d3dDZ/Ph66uLnAcFzeO3W7H8ePHJef+9ttv46233gr/f/jw4fjf//3f1JS6Ky5GxZRJ8B09Bk99HYItrQB4+I6fQM2Kv8Ea8MDE+WGAOqMhkt5oGOg5lh77E0LQlGR7psuJAQ9L0IuR7Yex6Ou/47Oh30NDXnHoS/L2AACsJgMC/2jAN1XHcN6xLlTovD+Awbt1X+ICR3fIEEyTrBgA366qweVjivDmxt0wOLswKWKb9l3AeCbUCE4vufMnzfhiTy7O23sEF6Tg+NzmHIiu4/fC60rtNvYjfhicQ/Gj3UdwgjelZH8FOWbcd3klnqurw4l2t+h2DIDB9mw0OboxQqOXtDG/GN//9+n4r6vHhMv9EgSRWvrUndbS0oJVq1bhwQcfhNlszvR0NHP99ddjxowZ4f8LqyinTp1CIKCvK17oz9BuNoEfNQoYFfrcv2cPeJYFx7DgGQPAh1YWE1nPURM3e6aixWg7k40MBj2l7AYEu3F9w1YKvRPZpuMbYCxCf9Kxv7SNtQtwrAWuSdf+Tm9zQRr3p+dYmdpf607g5hTujwHg3AbMhXi1uWTmzoGBz2iGrW0zWjEHnZMni/xaO0ajkfpgEIQMfcrAqK+vh9PpxP333x/+jOM47Nu3Dxs3bsQDDzyAQCAAl8sV5cVwOp1hb4PdbkdtbW3UuE6nM/yd8LfwWeQ22dnZMJvNyMvLA8uyYY+HgJh3JBKTyQSTyST6Xar6HfI8HzU2n5UFP2uAjQ8CfPwqu1b0MDLSZahEHicZRr0TeW9H8mNkaqz+vj89x+rr+1PzPOutc9djX4nsj435d2QREibij1SQlpKX1BTwgTt4EN1/WQrwPEw6GRkEQUjTpwyMsWPH4sknn4z67Pnnn0dJSQmuvfZaFBYWwmAwYM+ePZg0aRIA4Pjx42hpaUFlZSUAoLKyEuvWrYPT6QyHQe3evRvZ2dkoLQ1VExk5ciS+++67qP3s3r07PIbRaER5eTmqqqpwwQWhtTCO41BVVYUrr7wydQLQAYPNhvbcQuR7u2BEKB9EbsVYCrEV+mSUdr0MFal5JGNEnQnocQ71goyMvrk/PcfqjfvTc0567jNd+xOe0Vr2F7utmJdBbDy5z+X2J4WBYQCeB+9wwLvubRjOPx+ssU+pPwTR5+hTjfays7MxdOjQqD8WiwW5ubkYOnQorFYrLrnkEqxevRpVVVWor6/Hc889h8rKyrBxMH78eJSWlmLp0qU4dOgQ/vWvf+H111/HFVdcEfYuXH755WhubsYrr7yCY8eO4YMPPsD27dtx9dVXh+cyY8YMfPLJJ/j8889x9OhRrFixAl6vN65XRm+DKSqC55xz4TTbEGQMUd9FrholNHaSv2FE/sQiNUet46hZrdOyopduxVzN/BIZR69xiTODvna9pGuucs+eVO4vVWOL/VvL7yI/U3o26w0DgBWe0AyD4JEj4PbtS8OeCeLMpt+Z8D/5yU/AMAyeeuopBAKBcKM9AZZl8etf/xorVqzAgw8+CIvFgunTp2P27NnhbYqKivDrX/8aL7/8Mt5//30MHDgQ//Ef/xEuUQsAU6ZMQUdHB9asWQOHw4Fhw4bhN7/5jWyIVG8gsoytuakWOb5uGLkADBEpcj2xqzG/hTalO5JExoodL3KMWPd5Ioi53MUUbrltIr/nY7aJnWvs50rbShE7P6nfKHmmEl0NTHR/qURppbQ/oNXLl2qZqL0O9d4XEtxX5D2r9ffJXNPJyEbrftVur3Y+ahZn0ukx1uXcBfzg2tv1mRBBEJIwfKqC/wnVnDp1Kqp8rR4wDIPi4mKcOHFCNL+jq7YBu1a+gQF7d8HeHSpjazhdxpbQjlwBR6mwAjnjSKtBxsf8LYceK4dK+4vcR6zXSU/lIxFDKJVEHrOW79SOq/b3UnJRUgZTpSymwjOaSJlttb+XGyuV++1L3qBMovk6ZVnAYABMJiAnBzkPPgBjTCl6rZhMJkryJggZ+p0Hg1CHbcRwTHn0V+CamhA4fBi8wwle5LHN8zzQ0QH4fIDJBCYvL/Sw1rhNbx0r2f0xYGDPz4PD2QGO5wCnE/6mkzj+r30wt5xCjtcd9hBpMd60Gnqx3qdUI+a5CYUiiG8r5omSUrj1DP+KRItinqyircY7lKiCm+xqejLf67nfZAwl4btkzlMyns9k90t5YsmhWVZC3wueh2HoULD/9m96T4kgiBjIwDiDYVgWhpISGEpKMj2VPgvDMCgoLoY3xlOUx3Gixlu/NMZ4vucFrmIs38lm1L/3Gc5yNsMcDIDhObARBliqwyt4iCt5bMy2qeZMVyjFwg+FzyP/VhojEyS73zP93GcEhgEzYAAsN1xPCd4EkQboLiOIFEDGmzTZAEZOnRYXooc0hOhFGhlAj7FBoYGZgUW8kcGDzgehIywLJjsbzLAyZP34x1SiliDSBBkYBEGkHTUhepGeEMZsxoDSs+Ho7JTdTpP3hWGiPC9JjdVbvUsJ7A88kAseHS2tgMmYvrl7vYDZ3KdklcxYDGsIh1fy4Hvl3HuLrBKdO9PZCTYrG2d9fyKcgweDMURXTiQIInWQgUEQREbQ4uWRCkUj9IdhGBQVFyNIsk4pdE2nB4ZhYCsuRifJmSDSCnmiCYIgCIIgCILQDTIwCIIgCIIgCILQDTIwCIIgCIIgCILQDTIwCIIgCIIgCILQDTIwCIIgCIIgCILQDTIwCIIgCIIgCILQDTIwCIIgCIIgCILQDTIwCIIgCIIgCILQDTIwCIIgCIIgCILQDerk3QswGlN3GlI5NtEDyTk9kJzTB8k6PZCc04PecqbzRhDyMDzP85meBEEQBEEQBEEQ/QMKkeqndHd34/7770d3d3emp9KvITmnB5Jz+iBZpweSc3ogORNEZiADo5/C8zwaGhpADqrUQnJODyTn9EGyTg8k5/RAciaIzEAGBkEQBEEQBEEQukEGBkEQBEEQBEEQukEGRj/FZDLhpptugslkyvRU+jUk5/RAck4fJOv0QHJODyRngsgMVEWKIAiCIAiCIAjdIA8GQRAEQRAEQRC6QQYGQRAEQRAEQRC6QQYGQRAEQRAEQRC6QQYGQRAEQRAEQRC6Ycz0BAj92bhxI9555x04HA6UlZXhjjvuwIgRIzI9rT7D3r17sWHDBjQ0NKC9vR2LFy/GBRdcEP6e53msWbMGn3zyCVwuF0aPHo0777wTxcXF4W26urrw4osv4ttvvwXDMPjBD36A22+/HVlZWZk4pF7J22+/ja+++grHjh2D2WxGZWUlbrnlFpSUlIS38fl8WL16NbZt2wa/34/x48fjzjvvhN1uD2/T0tKC5cuXo7q6GllZWZg+fTrmzJkDg8GQgaPqnXz44Yf48MMPcerUKQBAaWkpbrrpJpx33nkASM6pYv369Xjttddw1VVXYd68eQBI1nqwZs0avPXWW1GflZSUYMmSJQBIxgTRG6AqUv2Mbdu2YenSpZg/fz5GjhyJ9957Dzt27MCSJUuQn5+f6en1Cb777jscOHAA5eXlePLJJ+MMjPXr12P9+vVYuHAhioqK8MYbb+DIkSN4+umnYTabAQCPPfYY2tvbsWDBAgSDQTz33HOoqKjAvffem6nD6nU8+uij+OEPf4iKigoEg0H8/e9/R2NjI55++umwIbZ8+XLs3LkTCxcuhNVqxcqVK8GyLP7whz8AADiOwy9/+UvY7XbceuutaG9vx9KlS3HppZdizpw5mTy8XsU333wDlmVRXFwMnuexadMmbNiwAU888QTOPvtsknMKqK2txTPPPAOr1YoxY8aEDQySdfKsWbMGX375JX7729+GP2NZFnl5eQBIxgTRK+CJfsV///d/8ytWrAj/PxgM8gsWLODffvvtzE2qDzNz5kz+yy+/DP+f4zh+/vz5/D/+8Y/wZy6Xi58zZw6/ZcsWnud5vrGxkZ85cyZfW1sb3ua7777jZ82axbe2tqZv8n0Mp9PJz5w5k6+uruZ5PiTXm2++md++fXt4m6NHj/IzZ87kDxw4wPM8z+/cuZOfNWsW397eHt7mgw8+4G+77Tbe7/endf59jXnz5vGffPIJyTkFdHd38//5n//J79q1i3/ooYf4l156ied5uqb14o033uAXL14s+h3JmCB6B5SD0Y8IBAKor6/H2LFjw5+xLIuxY8eipqYmgzPrPzQ3N8PhcGDcuHHhz6xWK0aMGBGWcU1NDXJyclBRURHeZuzYsWAYBrW1tWmfc1/B7XYDAGw2GwCgvr4ewWAw6noeMmQICgsLo2Q9dOjQqNCHCRMmoLu7G42NjembfB+C4zhs3boVXq8XlZWVJOcUsGLFCpx33nlRzwmArmk9aWpqwl133YV77rkHf/7zn9HS0gKAZEwQvQXKwehHdHR0gOO4qIcmANjtdhw/fjwzk+pnOBwOAIgLN8vPzw9/53A4wq56AYPBAJvNFt6GiIbjOKxatQqjRo3C0KFDAYTkaDQakZOTE7VtrKxjr3fh3JCsozly5AgeeOAB+P1+ZGVlYfHixSgtLcWhQ4dIzjqydetWNDQ04PHHH4/7jq5pfRg5ciTuvvtulJSUoL29HW+99RZ+97vf4amnniIZE0QvgQwMgiAyzsqVK9HY2IhHHnkk01Ppt5SUlOBPf/oT3G43duzYgWeffRa///3vMz2tfkVLSwtWrVqFBx98MJyPReiPUJwAAMrKysIGx/bt20nuBNFLIAOjH5GXlweWZeNWYMRWa4jEEOTodDoxYMCA8OdOpxPDhg0Lb9PR0RH1u2AwiK6uLjoPIqxcuRI7d+7E73//ewwcODD8ud1uRyAQgMvlilqNdDqdYTna7fa4sDOn0xn+jujBaDRi8ODBAIDy8nLU1dXh/fffx5QpU0jOOlFfXw+n04n7778//BnHcdi3bx82btyIBx54gGSdAnJyclBSUoKmpiaMGzeOZEwQvQDKwehHGI1GlJeXo6qqKvwZx3GoqqpCZWVlBmfWfygqKoLdbseePXvCn7ndbtTW1oZlXFlZCZfLhfr6+vA2VVVV4HmeygVHwPM8Vq5cia+++gq/+93vUFRUFPV9eXk5DAZDlKyPHz+OlpaWKFkfOXIkrBwAwO7du5GdnY3S0tL0HEgfheM4+P1+krOOjB07Fk8++SSeeOKJ8J+KigpMnTo1/G+Stf54PB40NTXBbrfT9UwQvQTyYPQzZsyYgWeffRbl5eUYMWIE3n//fXi9Xlx00UWZnlqfQXhZCTQ3N+PQoUOw2WwoLCzEVVddhXXr1qG4uBhFRUV4/fXXMWDAAJx//vkAQj0GJkyYgGXLlmH+/PkIBAJ48cUXMWXKFBQUFGTqsHodK1euxJYtW/CrX/0K2dnZYc+b1WqF2WyG1WrFJZdcgtWrV8Nms8FqteLFF19EZWVlWFEYP348SktLsXTpUsydOxcOhwOvv/46rrjiCphMpgweXe/itddew4QJE1BYWAiPx4MtW7Zg7969eOCBB0jOOpKdnR3OIRKwWCzIzc0Nf06yTp7Vq1fj+9//PgoLC9He3o41a9aAZVlMnTqVrmeC6CVQH4x+yMaNG7FhwwY4HA4MGzYMt99+O0aOHJnpafUZqqurRWPTp0+fjoULF4Yb7X388cdwu90YPXo0fvrTn0Y1iOvq6sLKlSujGu3dcccd1GgvglmzZol+fvfdd4cNYqFh1tatWxEIBEQbZp06dQorVqxAdXU1LBYLpk+fjrlz51LDrAief/55VFVVob29HVarFWVlZbj22mvDVY5Izqnj4YcfxrBhw+Ia7ZGsE2fJkiXYt28fOjs7kZeXh9GjR+Pmm28OhwCSjAki85CBQRAEQRAEQRCEblAOBkEQBEEQBEEQukEGBkEQBEEQBEEQukEGBkEQBEEQBEEQukEGBkEQBEEQBEEQukEGBkEQBEEQBEEQukEGBkEQBEEQBEEQukEGBkEQBEEQBEEQukEGBkEQRAp4+OGH8fDDDyf021mzZmHNmjX6ToggCIIg0oQx0xMgCILojUh1Go/loYcewpgxY1I8G4IgCILoO5CBQRAEIcI999wT9f/Nmzdj9+7dcZ8PGTJE9PcPPvhgyuZGEARBEL0ZMjAIgiBEmDZtWtT/Dx48iN27d8d9HovX64XFYoHRSI9XgiAI4syE3oAEQRAJ8vDDD6OzsxMLFy7Eyy+/jLq6OvzoRz/CvHnzwvkXwt+BQABr167Fzp070dTUBI7jMHz4cMyaNQvnnntu5g6CIAiCIHSGkrwJgiCSoLOzE4899hjKysowb948yXwMt9uNTz/9FGPGjMHcuXMxc+ZMdHR04NFHH8WhQ4fSO2mCIAiCSCHkwSAIgkgCh8OB+fPn47LLLpPdzmaz4dlnn40Knbr00kuxaNEi/POf/8TPfvazVE+VIAiCINICGRgEQRBJYDKZcPHFFytux7IsWDbkNOY4Dm63GxzHoaKiAg0NDameJkEQBEGkDTIwCIIgkqCgoEB1Qvfnn3+Od999F8eOHUMwGAx/XlRUlKrpEQRBEETaIQODIAgiCcxms6rtNm/ejOeeew7nn38+rrnmGuTl5YFlWaxfvx4nT55M8SwJgiAIIn2QgUEQBJEGduzYgUGDBmHx4sVgGCb8+ZtvvpnBWREEQRCE/lAVKYIgiDQg5F/wPB/+7ODBg6ipqcnUlAiCIAgiJZAHgyAIIg1MnDgRX331FZ588kl873vfQ3NzMz766COUlpbC4/FkenoEQRAEoRtkYBAEQaSBiy66CA6HAx9//DF27dqF0tJS/PznP8f27duxd+/eTE+PIAiCIHSD4SP99QRBEARBEARBEElAORgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQegGGRgEQRAEQRAEQejG/wc6O4nMc/7EXQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file