Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import xgboost as xgb | |
from sklearn.metrics import mean_squared_error | |
from sklearn.model_selection import train_test_split | |
import optuna | |
# Load the data | |
path = "/Users/deepjetani/Desktop/train.csv" | |
data = pd.read_csv(path) | |
# Get features | |
y = data['SalePrice'] | |
X = data[["LotArea","OverallQual", "OverallCond", "YearBuilt","TotRmsAbvGrd","GarageArea"]] | |
# Split the data | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) | |
# Load the XGBoost model | |
model = xgb.XGBRegressor(objective ='reg:squarederror', | |
colsample_bytree = 1, | |
eta=0.3, | |
learning_rate = 0.01, | |
max_depth = 5, | |
alpha = 10, | |
n_estimators = 500) | |
model.fit(X_train, y_train) | |
# Create a sidebar with sliders for each feature | |
sidebar = st.sidebar | |
sidebar.title("Input Features") | |
lot_area = sidebar.slider("Lot Area", 1300, 215245, 50000) | |
overall_qual = sidebar.slider("Overall Quality", 1, 10, 5) | |
overall_cond = sidebar.slider("Overall Condition", 1, 10, 5) | |
year_built = sidebar.slider("Year Built", 1872, 2010, 1950) | |
tot_rooms_above_grade = sidebar.slider("Total Rooms Above Grade", 2, 14, 7) | |
garage_area = sidebar.slider("Garage Area", 0, 1418, 500) | |
# Create a Pandas DataFrame with the user's input | |
input_df = pd.DataFrame({ | |
"LotArea": [lot_area], | |
"OverallQual": [overall_qual], | |
"OverallCond": [overall_cond], | |
"YearBuilt": [year_built], | |
"TotRmsAbvGrd": [tot_rooms_above_grade], | |
"GarageArea": [garage_area] | |
}) | |
# Use the XGBoost model to predict the house price range for the user's input | |
prediction = model.predict(input_df) | |
# Display the predicted house price range to the user | |
st.write(f"The estimated house price range is ${prediction[0]:,.2f}") | |