import gradio as gr from PIL import Image import hopsworks #login to hopswork project = hopsworks.login() fs = project.get_feature_store() #get the dataset api dataset_api = project.get_dataset_api() #downloads form dataset the predicted wine, the actual wine, the recent file and the confusion matrix dataset_api.download("Resources/texts/prediction.txt", overwrite=True) dataset_api.download("Resources/texts/label.txt", overwrite=True) dataset_api.download("Resources/images/wine/df_recent.png", overwrite=True) dataset_api.download("Resources/images/wine/confusion_matrix.png", overwrite=True) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Label("Today's Predicted quality") f = open("prediction.txt", "r") string = f.readline() f.close() input_img = gr.Textbox(string , elem_id="predicted-quality") with gr.Column(): gr.Label("Today's Actual quality") f = open("label.txt", "r") string = f.readline() f.close() input_img = gr.Textbox(string, elem_id="actual-quality") with gr.Row(): with gr.Column(): gr.Label("Recent Prediction History") input_img = gr.Image("df_recent.png", elem_id="recent-predictions") with gr.Column(): gr.Label("Confusion Maxtrix with Historical Prediction Performance") input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix") demo.launch()